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Aerospace and Ocean Engineering 

(ABSTRACT) 

Experiments were conducted to measure the three-dimensional static and free 

vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames 

are semi-circular with a radius of three feet, and one specimen has an I cross section and 

the other has a channel cross section. The flexibility influence coefficients were measured 

in static tests for loads applied at midspan with the ends of the specimens clamped. 

Natural frequencies and modes were determined from vibrational tests for free and 

clamped end conditions. The experimental data is used to evaluate a new finite element 

which was developed specifically for the analysis of curved, thin-walled structures. The 

formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. 

The predictions from the finite element program generally correlated well with the 

experimental data for the symmetric I-specimen. Discrepancies in some of the data were 

found to be due to flexibility in the 'clamped' end conditions. With respect to the data 

for the channel specimen, the correlation was less satisfactory. The finite element anal- 

ysis predicted the out-of-plane response of the channel specimen reasonably well, but 

large discrepancies occurred between the predicted in-plane response and the exper- 

imental data. The analysis predicted a much more compliant in-plane response then was 

observed in the experiments. 
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Chapter 1 

Introduction 

Background 

Fiber reinforced composite materials are used increasingly in the primary structural 

components of military aircraft. Use of composites in civilian transport aircraft is gen- 

erally limited to secondary structural components. However, the well documented ad- 

vantages of composites are motivating designers to use composites more extensively. 

Using composites in primary structural components of civilian aircraft raises the issue 

of crashworthiness. Research has revealed deficiencies in the energy absorbing capabili- 

ties of fiber reinforced composite materials. Though composites are poor energy 

absorbers on a material level, it may be possible to design composite structures which 

absorb energy efficiently. Thus, the challenge to the engineering community is to design 

composite structural components which carry the flight loads and perform satisfactorily 

in a crash situation. 
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Crashworthiness is a complicated issue, but arguably the primary concerns in a 

crash are to maintain a protective shell around the passengers and to keep decelerations 

at a survivable level. Aluminum fails in a ductile manner, thus it absorbs energy when 

it yields and fails. Fiber reinforced composites tend to fail in a brittle fashion which in- 

hibits their ability to absorb energy. It has been found under certain special circum- 

stances (e.g., tubes in axial compression) composite structures are able to efficiently 

absorb energy via a stable axial crush (Ref. 1). Though crushable composites are an 

encouraging development, application of this technology to aircraft design is not immi- 

nent. 

Before further discussion of the crashworthiness of composite materials, it is in- 

formative to review some of the research that has been conducted on the impact re- 

sponse of aluminum structural components. Drop tests of full scale aluminum transport 

fuselage sections have been conducted at the NASA Langley Research Center (Refs. 2, 

3, and 4). The results of drop tests of two fuselage sections are shown in Figs. 1 and 2. 

The fuselage section which includes the wing spar (Fig. 1) shows no structural damage, 

however, very high inertial loads were transferred to the passenger level. The fuselage 

section without the wing spar (Fig. 2) suffered extensive structural damage resulting in 

lower inertial loads at the passenger level. Extensive bending failures of the fuselage 

frames helped reduce the inertial loads transmitted to the passenger level indicating that 

the fuselage frame is an important component in the impact response of a conventional 

aircraft. 

If aluminum frames play a significant role in energy absorption, then composite 

frames may have to behave similarly to obtain acceptable energy absorption. Tests 

comparing the impact response of composite and aluminum frames (Ref. 5) showed that 

the frames fail in distinctly different fashions. The aluminum frames formed plastic 
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Figure 1. Drop test of full scale fuselage section: Fuselage section including the wing spars suffers 
little structural damage during drop test, resulting in high inertial loads at the passenger 
level. The section was dropped from a height of six feet resulting in an impact velocity of 
twenty feet per second. 
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hinges at several locations around the frame without fracturing, thus maintaining struc- 

tural integrity. Failure of the composite frames involved a complete fracture of the cross 

section near the impact point. Complete fracturing of the frame is an undesirable failure 

since loss of structural integrity implies an uncrashworthy design. 

Tests of built-up composite fuselage subsections (Ref. 6) further demonstrated the 

tendency of composite frames to fail in a brittle manner. The photographs in Figs. 3 and 

4 show a skeleton subsection before and after the drop test, respectively. The frames 

of the subsection suffered numerous localized brittle fractures resulting in loss of struc- 

tural integrity and minimal energy absorption. A drop test of another subsection which 

had a layer of skin attached to the outside of the frames resulted in a single brittle frac- 

ture of each frame at the impact point. The skin helped the subsection maintain struc- 

tural integrity. However, in both cases, very high inertial pulses were transmitted to the 

'passenger level'. 

These test results indicate that conventional designs for composite fuselage frames 

fail to provide satisfactory impact behavior. The structural design of a composite frame 

must complement the material system such that crashworthiness is achieved. Since un- 

conventional designs are necessary to utilize composites while maintaining 

crashworthiness, it is important to develop reliable analytical tools which can predict the 

response of these designs. The reliability of the analyses should be established by com- 

parisons with experimental data. This research attempts to provide some of this data and 

to evaluate a new finite element computer code. The finite element evaluated here is ex- 

pected to be incorporated in the crash analysis finite element program DYCAST. 
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Objective 

The objectives of this research are to measure the three-dimensional static and vi- 

bratory response of two graphite-epoxy frame specimens, and to correlate the exper- 

imentally measured response with predictions from a computer program which uses a 

newly developed finite element. The test specimens are thin-walled, open section, semi- 

circular frames with a nominal radius of three feet. One specimen has an I cross section 

and the other has an asymmetric channel cross section. The finite element was recently 

developed by Noor et al. (Ref. 7), for the analysis of curved thin-walled beams with open 

sections. The flexibility influence coefficients were measured in static tests for loads ap- 

plied at the midspan with the ends of the frames clamped in supports. Dynamic tests 

provided the natural frequencies and mode shapes of the frames for free-free and 

clamped-clamped end conditions. It is important to validate the analysis for the linear 

response of these frames before attempting the nonlinear analysis of frame collapse. 

Literature Review 

The scope of this research includes both the static and dynamic response of semi- 

circular frames. Since few researchers choose to address both topics in a single docu- 

ment, it is convenient to divide the literature review accordingly. 

Introduction 



Dynamics 

The vibrations of curved beams and rings is an old and recurring topic in the liter- 

ature. In general, the vibratory response of a curved beam or ring encompasses in-plane 

modes (deformations within the plane of curvature) and out-of-plane modes (defor- 

mations out of the plane of curvature). If the curved beam has a plane of symmetry co- 

inciding with the plane of curvature, then the in-plane and out-of-plane modes decouple 

and can be treated separately. Many early researchers took advantage of this. Only 

relatively recently have researchers addressed the coupled vibrational problem of a 

curved beam with an asymmetric cross section. 

The first published paper addressing the dynamic response of a circular ring was 

written by Hoppe (Ref. 8) in 1871. In 1888, Lamb (Ref. 9) determined the in-plane na- 

tural frequencies for a shallow ring segment with free-free end conditions. In 1892, Love 

(Ref. 10) generated the differential equations governing the vibration of a complete ring, 

solved the equations approximately, and presented frequency equations for the in-plane 

and out-of-plane modes of a complete ring. 

In 1928, Den Hartog (Ref. 11) used a Rayleigh solution to solve for the first in- 

plane natural frequency for ring segments with clamped and pinned boundary condi- 

tions. Den Hartog found that if the arc length of the ring segment was sufficiently small, 

the fundamental in-plane mode was extensional in nature possessing only two nodes 

similar to the fundamental mode of a straight beam. Generally, if the opening angle was 

greater than 80°, then the fundamental mode had three nodes and was flexural. For a 

semi-circular ring segment with clamped boundary conditions, Den Hartog's solution for 

the frequency co in Hertz reduces to 
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» -  ^22L(-^)i (i.i) 

where EIW is the in-plane bending stiffness, y is the mass per unit length, and a is the 

radius of the ring segment. 

In 1934, Brown (Ref. 12) used a modified Rayleigh solution to obtain the natural 

frequency of the fundamental out-of-plane mode for a clamped circular ring segment. 

For a semi-circular ring segment, Brown's solution for the frequency co in Hertz reduces 

to 

.1084 co   = 
a2 (f)* (l'2) 

assuming the ratio of in-plane bending stiffness to torsional stiffness is large 

(k = EIW/C > 75) where C is the torsional stiffness as defined by Timoshenko (Ref. 

13), y is the mass per unit length, and a is the radius of the ring segment. 

The vibrational response of curved beams and rings attracted moderate attention 

during the 30's, 40's, and 50's as researchers sought to improve their predictions by in- 

corporating refinements such as rotatory inertia and transverse shear deformation. In 

the interest of brevity, the body of literature from this period will not be addressed as it 

is of limited interest here. The interested reader may refer to two papers by Lang (Refs. 

14 and 15) and the dissertation of Maddox (Ref. 16) for a complete review of this period. 

In 1963, Hammoud and Archer (Ref. 17) published an interesting paper addressing 

the coupled vibrational response of complete rings and ring segments with asymmetric 

cross sections. They presented the coupled differential equations governing the in-plane 

and out-of-plane vibrations and used an approximate solution to the decoupled problem 

as their first guess in an iterative procedure to solve for the coupled natural frequencies. 
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Hammoud and Archer limited their scope to solid cross sections as their solution does 

not account for the effects of cross-sectional warping. 

Maddox (Ref. 16) addressed the decoupled vibrations of a complete thin-walled ring 

with one plane of symmetry. His solution accounts for transverse shear deformation, 

rotatory inertia, cross-sectional warping, and shear center eccentricity. Maddox reduced 

a higher order shell theory to a ring theory by integrating around the contour of the 

cross section and making explicit assumptions on the shell displacements. Maddox 

showed that shear center eccentricity and warping have significant effects on the re- 

sponse of some thin-walled rings. 

Endo (Ref. 18) solved for the vibrational response of a complete ring with an arbi- 

trary cross section. Kirkhope, Bell, and Olmstead (Ref. 19) also solved for the coupled 

vibrational response of a complete ring with an arbitrary cross section and presented 

experimental data in order to test their solution. These solutions are restricted to solid 

cross sections since warping is not included. Williams (Ref. 20) developed the differen- 

tial equations for complete thin-walled rings and applied them to several examples in- 

cluding ring segments with symmetric cross sections. Williams included the effects of 

transverse shear, rotatory inertia, and warping in his solution. 

Rao (Ref. 21) solved for the out-of-plane vibrational response of complete rings and 

ring segments. Rao included transverse shear deformation and rotatory inertia in his 

solution. He found that he could model a variety of unusual boundary conditions. 

Culver (Ref. 22) used Vlasov's (Ref. 23) thin-walled beam theory in his solution for the 

decoupled out-of-plane response of a curved beam. Culver assumed the cross section of 

the beam was doubly symmetric and treated the inertia terms as a distributed load in 

Vlasov's static formulation. Culver does not consider the inertia terms associated with 

warping. 
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Gardner and Bert (Ref. 24) presented a new first approximation theory for the in- 

plane dynamic behavior of shear deformable structures. Several references are made 

about the application of this theory to composite structures, but it was not addressed 

explicitly. The paper does include some experimental data on thick full rings. Bhimaraddi 

(Ref. 25) specifically addresses the dynamic response of curved laminated beams, though 

his discussions are limited to rectangular cross sections. Bhimaraddi found that coupling 

of in-plane and out-of-plane modes can happen despite a geometrically symmetric cross 

section if the ring is an unsymmetric laminate. Bhimaraddi presents the coupled 

equations in terms of laminate properties and some experimental data from laminated 

rings with two lamina. 

With the exception of Bhimaraddi (Ref. 25), the author knows of no research di- 

rected at the vibrational response of curved composite beams. Further, there seems to 

be a dramatic lack of experimental data for curved beams of any cross section or mate- 

rial system. This research will help to fill these voids. 

Statics 

The static portion of the literature review will be limited to those papers which 

specifically address thin-walled curved beams or have an important bearing on this re- 

search. Though much work preceded Timoshenko's series of papers (Ref. 13) on thin- 

walled beams, his work unified the existing engineering theories on the bending, torsion, 

and buckling of beams with thin-walled open cross sections. He presented new develop- 

ments such as the concepts of warping, shear center, and torsion center. His papers ad- 

dress thin-walled beams in a very thorough manner, though he does not treat curved 

beams. 
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Vlasov (Ref. 23) derived a beam theory for thin-walled beams including the effects 

of curvature. This represents the first detailed discussion of curved thin-walled beams. 

Vlasov included the effects of warping and rotatory inertia. He restricted his attention 

to thin rings facilitating the neglect of transverse shear deformation and shear center 

eccentricities. He also assumed that the cross section is infinitely rigid in its own plane. 

Gjelsvik (Ref. 26) presents Vlasov's theory in more modern terminology though it does 

not include the material on curved beams. 

Bauld and Tzeng (Ref. 27) extended Vlasov's theory to account for anisotropic 

material properties common in laminated composites. This theory uses modulus 

weighted section properties to account for stiffness variations through the thickness of 

the walls. This theory assumes that all the branches are midplane symmetric and the 

beams are straight. Though the theory was developed for straight beams, it could be 

extended to include curved beams. Lo (Ref. 28) used this theory in his analysis of 

fiexural-torsional buckling of laminated composite columns. 

Mabson (Ref. 29) discusses some of the differences between isotropic and composite 

curved thin-walled beams. Mabson shows that composite cross sections are more sus- 

ceptible to flexural deformations than isotropic cross sections. This indicates that com- 

posite beams may be more likely to violate the assumption that the cross section is 

infinitely rigid within its own plane. Mabson suggests a way of calculating effective 

cross-sectional stiffnesses for composite laminated beams of various cross sections. 

Tralli (Ref. 30) and Noor (Ref. 7) have both used hybrid finite elements to evaluate 

the static response of thin-walled structures. Tralli's approach addresses only straight 

beams, but will handle closed as well as open sections. While Tralli's program is limited 

to static analysis, Noor's finite element was also developed for the free-vibrational 

analysis of curved thin-walled beams. Noor's program is used extensively in this re- 

search and will be discussed more thoroughly in Chapter 5. 
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Summary 

Having attempted to provide some of the background and motivation for this study, 

the remaining material will be devoted to describing the research. The test specimen's 

manufacture, material system, and dimensions are discussed in Chapter 2. The exper- 

imental apparatus and test procedures are presented in Chapter 3. The experimental 

results are presented in Chapter 4. The analytical effort is outlined in Chapter 5. Cor- 

relation of experimental and numerical results comprise Chapter 6. Concluding remarks 

and recommendations for future work are presented in Chapter 7. 
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Chapter 2 

Test Specimens 

Design and Fabrication 

Conventional aircraft designs use thin-walled frames and beams to build the skele- 

ton of a fuselage. The test specimens for this research are intended to represent fuselage 

frames. Two semi-circular frames were tested, a symmetric I-section and an asymmetric 

channel section. The cross-sectional shapes are shown in Fig. 5. Channel and I-sections 

are commonly used in conventional aircraft designs and provide the opportunity to in- 

vestigate the effect of symmetry. In tests of composite fuselage subsections (Ref. 6), it 

was found that the skin substantially strengthened and stabilized the subsections. This 

motivated the addition of a thick layer of'skin' to the outside of each frame. The layer 

of 'skin' is intended to simulate the out-of-plane stabilizing effect of the fuselage skin. 

The test specimens were fabricated using AS4/5208, graphite/epoxy, 

preimpregnated, unidirectional, tape. The tape was manufactured by Narmco and the 

specimens were laid up by Bell Textron. The nominal material properties for AS4/5208 
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are presented in Table 1. The specimens were laid up using a quasi-isotropic sequence 

following the schematic in Fig. 6. The specified angles are measured with respect to the 

circumferential axis of the specimen. The layup in the 8 ply cap flanges is (+45/0/90)s. 

The layup for the 16 ply skin is (+45/0/90)2s. In the region where the attachment flanges 

are bonded to the skin, the 24 ply layup is 

(±45/0/90/90/0/+45/±45/0/90/±45/0/90/90/0/+45/90/0/+45)T . Although this layup is 

asymmetric, a classical analysis of this region shows that the coupling terms are negligi- 

ble. The web of the channel specimen has the same layup as the cap flanges, but the web 

of the I-specimen has an anti-symmetric layup (+45/0/90/90/0/+45)T, resulting in sig- 

nificant extension-bending coupling terms. It will be evident from the data in subsequent 

chapters, that the anti-symmetric layup in the web of the I-section specimen did not 

adversely effect its symmetric response. 

Table 1.    Nominal material properties for AS4/5208 from Narmco 

Property 

Longitudinal Modulus Eu 

Transverse Modulus E22 

Transverse Modulus 
In-plane Shear Modulus 
Transverse Shear Modulus 
Transverse Shear Modulus 
In-plane Poisson Ratio 
Transverse Poisson Ratio vi: 

Transverse Poisson Ratio v2: 

Lamina Thickness t 
Material Mass Density p 

E33 
G12 
G13 
G23 

Value 

18.40 x 106 psi 
1.64 x 10« psi 
1.64 x 106 psi 
0.87 x 10« psi 
0.87 x 106 psi 
0.49 x 106 psi 
0.30 
0.30 
0.35 
0.0055    in 
1.80 x 10-3     (lb-sec2)/(ft-in3) 

The nominal dimensions of the test specimens are shown in Fig. 7. The diameter 

of the frames is 72 inches and the cross-sectional heights are about 1.5 inches. This ge- 

ometry places the frames in the category of thin rings. The effects of rotatory inertia and 

transverse shear typically have little effect on the response of thin rings. 
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3.50" 
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.25" 1.41" 
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t=0.08" t=O.I2" 

Figure 7.   Specimen dimensions:   The radial and cross-sectional dimensions of the tests specimens are 
presented in two views. 
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Specimen Characterization 

The results of an ultrasonic inspection of the web of the channel specimen is shown 

in Fig. 8. The white patches indicate regions which may be damaged or substandard, 

raising questions about the consistency of the stiffness properties with respect to cir- 

cumference. Subsequent tests were designed to investigate this concern. After the static 

and dynamic tests were completed, the I-section specimen was instrumented for a crush 

test and the channel specimen was cut into five ring segments for further evaluation. 

Four of the segments were tested in three point bending to determine if the bending 

stiffness was constant with respect to circumference. These specimens had a uniform arc 

of about forty degrees. The fifth ring segment was cut into tensile and shear coupons for 

material characterization tests. 

The three point bend test configuration is shown in Fig. 9. The ring segments were 

supported at their ends across a span of eighteen inches. The segments were loaded 

radially by hanging twenty pound calibration weights from the center of the segments. 

A load fixture was used to apply the load to the segments such that the segments did 

not twist. The displacements were measured using dial indicators. Each specimen was 

tested five times and the resulting data was averaged. The results of the tests are pre- 

sented in Fig. 10. The load displacement curves for the four segments are very consist- 

ent. The slope of the lines fall within +3 % of the average slope. These results negated 

much of the concern about circumferential stiffness nonuniformity suggested by the 

ultrasound scan. 

The last segment was cut into two tensile and three shear coupons for material 

characterization tests.   The coupon tests were intended to confirm the effective moduli 
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RADIAL DISPLACEMENT NCHES 
SPECIE 1      a-« SPECMEN 2 

SPECIMEN 3      ~—* SPEOMEN 4 

Figure 10. Load-displacement data from three-point bend tests: The plot shows the load versus dis- 
placement plot for the four segments cut from the channel specimen. The slopes of the lines 
are very consistent indicating consistent bending stiffnesses. 
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(E„ and GJ calculated from classical lamination theory and nominal material proper- 

ties. 

The shear coupons were cut from the web of the section since those coupons had 

to be flat. The Iosipescu shear test was chosen because of the size limitations on the 

shear coupons. The shear coupons were cut according to the dimensions specified by 

Pindera, et al. (Ref. 31). The coupons were instrumented with a three arm rectangular 

rosette (electrical resistance foil gages) which had a gage length of two millimeters. The 

results of the shear tests are presented in Fig. 11. The tests gave consistent values for the 

shear modulus, but the coupons did not fail in shear because of the quasi-isotropic 

layup. The laminates failed by edge brooming in the 90° layers at the contact points. 

Two tension coupons, six inches by 5/8 inches, were cut from the cap flange of the 

channel specimen. The initial geometry is curved, but the eight ply quasi-isotropic layup 

is sufficiently flexible that the initial curvature has little effect on the test. The coupons 

were instrumented with a three arm rectangular rosette on one side and a uniaxial gage 

on the other side for bending correction. The two tension tests gave nearly identical re- 

sults for the extensional modulus E« and failure strain. The stress versus strain plots for 

the two tensile tests are shown in Fig. 12. The failure strain in the tension tests was 

about 1 % for both coupons. 

The results of the material characterization tests are summarized in Table 2. The 

experimental values for E^ and G^ compared well with the analytical predictions from 

classical lamination theory. The discrepancy in the extensional modulus was less than 1 

%. The discrepancy in the shear modulus was about 8 %. The experimentally deter- 

mined stiffness properties were used in all of the analyses for both the channel section 

and the I-section specimens. 

Test Specimens 24 



25- 

20- 

S515 

10 

0.0 
T""f "W   t     1'    t     P"P^"I"T'P"I"P"I' 

0.2 
t     |      I     f     t"11!    n—.f—F»I.I|«    |   ij     |     |     fi    f n   l      |     t     |     |     fini I     |     f     f    | yii.ipii.nfi- 

0.« 0.6 0.8 1.0 

/xy '• 
 SHEAR SPECKEN 1 
 SHEAR SPECIMEN 2 
 SHEAR SPECMEN 3 

Figure 11.    Iosipescu shear test results:    The plot shows the shear stress versus shear strain results for 
the three iosipescu shear coupons cut from the web of the channel specimen. 

Test Specimens 25 



0.00 0.25 0.50 0.75 1.00 1.25 

Sxx  % 
  TDßlON SPECIMEN 1 
 TENSION SPECBüEN 2 

Figure 12.   Tension test results:   The plot shows the stress versus strain results for the two tensile 
coupons cut from the cap flange of the channel specimen. 
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Table 2.    Engineering constants from quasi-isotropic coupon tests 

Property  Experimental Analytical Error2 

Extensional Modulus E^ 7.361 x 106 psi 7.423 x 106 psi 0.84 % 
In-plane shear modulus G^ 2.655 x 106 psi 2.862 x 106 psi 7.79 % 

a (Analysis - Exp)/Exp x 100 
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Chapter 3 

Experimental Apparatus and Tests 

The experimental scope of this research includes both dynamic and static tests. The 

dynamic portion of the experimental program employs several test methods to obtain 

the natural frequencies and the associated mode shapes. The static phase of the research 

program involves subjecting the specimens to combined loads at the midspan and 

measuring the resulting displacements at the midspan. After the dynamic and static tests 

were completed, the I-section specimen was instrumented with strain gages and prepared 

for a quasi-static crush test. The experimental apparatus and test procedure for each 

type of test will be discussed independently. The dynamic tests will be discussed first 

followed by the static tests and the crush test. 
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Dynamic Tests 

This section presents the experimental apparatus and procedures involved in the 

dynamic tests. The first set of tests were run with free-free boundary conditions and used 

an air shaker to excite the specimens. After these tests, the ends of the specimens were 

secured in aluminum end fixtures using Hysol 934 potting compound. The remaining 

tests were run with clamped-clamped boundary conditions. Each set of tests involved 

exciting the specimens radially and laterally in order to excite both in-plane and out-of- 

plane modes. The tests are differentiated by the boundary conditions used. The free-free 

frame tests will be discussed first followed by the clamped-clamped frame tests. 

Free-Free Frame Tests 

The free-free frame tests were conducted using the facilities at the Landing and Im- 

pact Dynamics Branch at NASA Langley Research Center. The experimental setup for 

the free-free air shaker tests is shown in Fig. 13. The specimens were hung by elastic 

bands at two points to emulate free-free boundary conditions. These tests used an air 

shaker to excite the specimens with pulses of compressed air. The frequency and mag- 

nitude of the excitation were variable. The air shaker was a portable unit that required 

no physical attachment to the specimens. Thus, the air shaker could be oriented in dif- 

ferent directions to excite both in-plane and out-of-plane modes. 

The response of the specimens was monitored with a hand held velocity probe. The 

response signal from the probe was monitored visually on an oscilloscope. The probe 

detected in-plane motion when oriented radially and out-of-plane motion when oriented 

perpendicular to the plane of the frame.   A natural frequency was isolated when the 
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oscilloscope displayed a strong, clean, constant sinusoidal signal. A natural frequency 

was tuned in much the same way that a radio station is tuned in. Once a natural fre- 

quency was isolated, a strobe light was used to to determine the frequency of excitation. 

The specimen was excited at that frequency while the mode shape was studied and the 

nodes located. The frequencies for the rigid body modes were much lower than the fre- 

quency of the first vibrational mode indicating that the boundary conditions were 

achieved satisfactorily. The rigid body modes include in-plane and out-of-plane pendu- 

lum and rotational modes. 

Clamped-Clamped Frame Tests 

The clamped-clamped frame tests were conducted using the facilities in the Depart- 

ment of Aerospace and Ocean Engineering at Virginia Polytechnic Institute and State 

University. The objectives of these tests were to determine the natural frequencies and 

node locations of the clamped-clamped resonant modes and to obtain information on 

the dynamic response of the frames over a range of frequencies in the form of frequency 

response plots. A structural analyzer was used to generate the frequency response plots. 

Based on the frequency response plots, a signal generator was used to excite the indi- 

vidual modes enabling the location of the nodal positions to be determined. 

The clamped-clamped tests used a Synergistic Technology Incorporated (STI) 

model 11/23 structural analyzer to generate the excitation signal and process the re- 

sponse data. The structural analyzer employs two interacting software packages set up 

on a VAX minicomputer to control the excitation signal and to collect and process the 

data. A flowchart of the test procedure is presented in Fig. 14. The excitation signal is 

routed through an amplifier to an electromagnetic shaker.   The electromagnetic shaker 
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Structural 
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Figure 14. Structural analyzer test flowchart: The structural analyzer collected force and response 
data from the force gage and proximity probes. Fast Fourier Transforms of the force and 
response data were calculated. Output displacement was divided by input force and plotted 
on a log scale versus frequency in the form of frequency response plots. 
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is attached to the specimen via a sting and a piezoelectric force gage. The force gage 

monitors the amplitude and frequency of the input force and sends this information to 

the structural analyzer. The response of the frame is detected by Bently-Nevada non- 

contacting magnetic proximity probes which measure the displacement of small mag- 

netic targets. A typical arrangement of the electromagnetic shaker, force gage, and a 

proximity probe is presented in Fig. 15. 

The operator prescribes a frequency range and step size for a given test. The struc- 

tural analyzer sweeps through the frequency range, exciting the specimen at each fre- 

quency for fifty cycles and samples data from the force gage and proximity probes. The 

structural analyzer calculates Fast Fourier Transforms (FFT's) of the collected force and 

displacement data, divides displacement FFT by the force FFT and plots this ratio on 

a log scale versus frequency in hertz. 

The force actuator and proximity probes were oriented in different directions in or- 

der to excite and detect both in-plane and out-of-plane modes, respectively. The radial 

orientations for the force actuator and proximity probes are shown in Fig. 15. The out- 

of-plane orientations for the shaker and proximity probes are shown in Figs. 16 and 17. 

The specimens were clamped to a massive steel structure using C-clamps in an effort to 

obtain clamped-clamped boundary conditions. The steel structure was shimmed and 

leveled to provide a stable test platform. The shaker and the proximity probes were hung 

from separate steel structures isolating them from the test specimen. 

The structural analyzer results are presented in the form of frequency response plots 

and phase angle diagrams. A plot was generated for each probe in each test. The plots 

for an in-plane test of the I-section specimen are shown in Fig. 18. Spikes in the fre- 

quency response plots, accompanied by shifts in the phase diagram, indicate resonant 

modes. The structural analyzer tests provided excellent values for the natural frequencies 
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of the resonant modes, however, the test procedure made it impossible to study the mode 

shapes of the modes associated with the spikes. It is impossible to identify the type of 

mode or the nodal locations from the structural analyzer test data. A signal generator 

was used to identify the modes and locate nodal positions. 

The signal generator was used to excite the specimens at the frequencies corre- 

sponding to the spikes in the frequency response plots. The signal generator sent the 

signal to the electromagnetic shaker which excited the specimen. The signal from the 

force gage was not monitored during these tests. The response signals from the proximity 

probes were monitored visually one at a time on an oscilloscope. The mode was tuned 

in by monitoring the response signals on the oscilloscope and adjusting the frequency 

of excitation similar to the air shaker tests. Once a mode was isolated it could be excited 

indefinitely enabling mode identification and the location of nodal positions. 

Static Tests 

This section discusses the test apparatus and procedures used in the static portion 

of the experimental program. The objective of these tests was to determine the flexibility 

matrices which relate radial, lateral, and twist displacements (W,V,</>) to the radial, lat- 

eral, and torsional loads (P,Q,T) at the midspan of the test specimens. The 

displacement-load relation is 

w «11 «12    «13 P 
r v}- «21 «22    «23 
Q 

J 

4> «31 «32    «33 T 

(3.1) 
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where   au   are the flexibility influence coefficients. 

Two sets of static tests were necessary to generate all of the flexibility influence co- 

efficients. The in-plane tests loaded the specimen with a radial force and a torque, thus 

facilitating calculation of the first and third columns of the flexibility matrix. The out- 

of-plane tests loaded the frames with a lateral load and a torque, enabling the calculation 

of the second and third columns. In both sets of tests, the frames were clamped to a 

massive steel structure which was shimmed and leveled to provide a consistent test 

platform. The in-plane static tests will be discussed first followed by the out-of-plane 

tests. 

In-Plane Static Tests 

The in-plane static tests generated a radial load by hanging twenty pound cali- 

bration weights from the specimens using a load fixture attached to the specimen. The 

load fixture and the coordinate system are shown schematically in Fig. 19. The weights 

were hung from a steel cable which was positioned between two nuts on a threaded rod. 

By moving the nuts along the threaded rod, the load could be traversed across the cross 

section, thus changing the torque applied to the cross section. The torque for each test 

is the product of the radial load (P) and the moment arm (D). The moment arm is the 

distance along the threaded rod from the load application point to some point of refer- 

ence where the torque is taken to be zero. It is convenient to define this point of refer- 

ence as the point where a radial load causes no twist and no lateral deformation. This 

point is analogous to the shear center of a straight beam. 

Photographs of the load fixture and the in-plane static test apparatus are shown in 

Figs. 20 and 21, respectively.   Displacement measurements were taken at the midspan 
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Figure 19. Load fixture and Coordinate system: The load fixture applied radial, and torsional loads 
to the specimen. The applied torque was the product of the radial load (P) and the moment 
arm (D). Radial (W), lateral (V), and twist (<£) deformations were measured with respect 
to the centroidal coordinate system shown. 
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using dial indicators which have a range of one inch and a resolution of .0005 inches. 

Two dial indicators were oriented radially on top of the load fixture and a third was 

oriented laterally on the side of the load fixture. Assuming that the cross section of the 

test specimen and the load fixture move as a rigid body, three measurements are suffi- 

cient to define the deformed position of a body moving in a plane. The data from the 

dial indicators were resolved into lateral and radial displacements of the centroid and the 

twist of the cross section. The data reduction scheme used to obtain the centroidal dis- 

placements and a sample of the reduced data are presented in Appendix B. The dial in- 

dicators were attached to separate steel frames isolating them from the specimens. 

Readings were taken each time a weight was loaded or unloaded and the values were 

averaged. The frames were loaded radially to 120 pounds. 

For the in-plane static tests, the displacement-load relationship reduces to the fol- 

lowing equation because the lateral load (Q) is assumed zero. Thus, the middle column, 

a12, a22, and a32 , cannot be calculated from the in-plane tests. 

3 p.« 

The nonlinearities of this problem are most prevalent when the frames bend out of 

plane. In order to minimize the nonlinear response, the maximum loads were selected 

such that the maximum lateral displacement was limited to one half inch. This limitation 

effectively dictated the maximum allowable torque since the maximum radial load was 

already set. The torque is the product of the radial load and moment arm, thus the mo- 

ment arm was adjusted to keep the lateral displacement within the allowed limit. 
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The point of zero twist marked the center of the test range for each specimen. Since 

the I-section specimen was suffer then the channel specimen with respect to torsion, the 

maximum moment arm for the I-specimen was correspondingly larger resulting in a 

larger test range. Many tests were run with the load application point traversing through 

the test range subjecting the tests specimens to positive and negative torques. The re- 

sults of the static tests were plotted as load versus displacement for various values of the 

moment arm. The flexibility influence coefficients were calculated from this data. 

Out of Plane Static Tests 

The out-of-plane tests required slight changes in the test apparatus and procedures. 

The out-of-plane tests involved loading the specimens with a lateral load and a torque. 

The load fixture was modified (Fig. 22) so that loads could be applied perpendicular to 

the plane of the frame. The load fixture had a tendency to pull away from the test 

specimen requiring the load fixture to be tied to the specimen, thus, forcing the load 

fixture and the test specimen to deform as a rigid body. The frames are very compliant 

laterally requiring smaller loads to reach the limiting lateral displacement. The moment 

arm reference points for the out-of-plane tests were chosen as the centroid of the cross 

sections. 

Photographs of the modified load fixture and the test apparatus for the out-of- 

plane static tests are shown in Figs. 23 and 24, respectively. Calibration weights were 

hung from a piece of twine which was routed over a pulley and attached to the load 

fixture. The load application point was changed by traversing two nuts along a threaded 

rod similar to the in-plane tests. Changing the load application point effectively changed 
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the relative torque applied to the specimen. The pulley was mounted on a traverse so 

that the twine could be kept level, thus, keeping the load perpendicular to the frame. 

For the out-of-plane static tests, the displacement-load relationship reduces to the 

following equation because the radial load (P) is assumed zero. 

(3.3) 

w 
"1 

a12    a13 

fQ vr a22    a23 IT 
4> a32    a33 

Thus, the first column, an, a21, and a31 , cannot be calculated from the out-of-plane tests. 

The torque (T) is the product of the lateral load (Q) and the moment arm (D). Three 

dial indicators were used to measure the displacements of the specimen at the midspan. 

The dial indicators were arranged in the same manner as in the in-plane tests, thus, the 

same data reduction scheme was used. 

Maximum lateral loads of 4.5 and 2.3 pounds were used for the I-section and 

channel section specimens, respectively. Readings were taken from the dial indicators 

each time a weight was loaded or unloaded. The resulting data was then averaged. After 

each test the moment arm was incremented by one-eighteenth of an inch (one turn on 

threaded rod) and the procedure was repeated. The test range for the out-of-plane tests 

was larger than the test range in the in-plane tests, but the loads were much smaller 

yielding smaller torques. 
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Crush Test 

The crush test is part of the ensuing phase of this research and only has a tangential 

application to this study.1 The objective of the crush test was to obtain experimental 

data on the large deflection, failure, and post failure responses of the frame. To obtain 

this data, the I-section specimen was loaded radially through successive failure events. 

The current research is only concerned with the linear small deflection response of the 

frame, however, since the crush test loading is similar to the in-plane static tests, the 

crush test provided a second opportunity to determine the flexibility coefficient au. 

A photograph of the test apparatus is shown in Fig. 25. The frame was restrained 

from deforming laterally or twisting at the midspan and the potted ends were bolted to 

an I-beam to simulate clamped-clamped boundary conditions. The crush test was 

slightly different from the in-plane static tests where the midspan was unrestrained and 

the potted ends were clamped to the I-beam. The frame was instrumented with strain 

gages to measure the strain distribution. A string potentiometer was used to measure the 

radial displacement. A Tinius-Olsen test machine was used to apply the load. For the 

midspan restrained specimen, the displacement-load relation is 

W 

:•] 
o 

all    a12    a13 

a21    a22    a23 

a31    a32    a33 

P 

T 

(3.4) 

where V and </> have been restrained and Q and T are not necessarily zero. Thus, if 

an and a13 are sufficiently small the radial displacement is simply the product of the ra- 

1 The static crush test was conducted at Virginia Tech in cooperation with Mr. E. Moas, graduate research 
assistant, and Professor O. H. Griffin. This project is also supported by the Landing and Impact Dy- 
namics Branch, NASA Langley Research Center. 
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dial load and au. The flexibility coefficient an was obtained directly from the load- 

displacement plot. 
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Chapter 4 

Experimental Results 

Data from the dynamic testing is presented first followed by the static test data. The 

dynamic test data includes the natural frequencies and node locations of the specimens 

for free-free and clamped-clamped boundary conditions. The static test data is presented 

in plots of load versus displacement. The flexibility influence coefficients were calculated 

from this data. 

Dynamic Test Data 

In general, the vibrational response of the frames can be divided into in-plane and 

out-of-plane motion. The vibrational response of the I-specimen completely decouples 

into in-plane and out-of-plane modes. All the modes of the channel specimen exhibit 

coupling between in-plane and out-of-plane motions, but the modes were clearly domi- 

nated by one type of motion. The photograph in Fig. 26 is representative of the coupled 
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response observed in the modes of the channel section specimen. The photograph shows 

the first free-free in-plane flexure mode of the channel specimen. Though the cross sec- 

tion experiences some lateral and twisting motion, the dominant motion is radial. The 

photograph in Fig. 27 shows a pure out-of-plane motion indicative of the uncoupled 

response displayed by the I-section specimen. The photographs in Figs. 26 and 27 were 

taken during the free-free vibrational tests using a strobe light which was tuned to twice 

the excitation frequency. Using this technique the cross section was illuminated at either 

extreme of the motion, thus, capturing the characteristic motion of that mode. 

A mode was identified by two characteristics, the dominant motion and the number 

of nodes in the mode shape. The nodes of an in-plane mode are defined as those points 

where the radial motion is nearly zero. This does not mean that the out-of-plane dis- 

placement is zero there, though in general it is small too. Likewise, the nodes of an 

out-of-plane mode are defined as those points where the out-of-plane bending and 

twisting motions are nearly zero. 

Three distinct types of modes were observed in the free-free vibrational tests, 

whereas only two types of modes were observed in the clamped-clamped tests. For the 

free-free tests, motions associated with in-plane bending, out-of-plane bending, and 

torsion were observed at different frequencies. For the clamped-clamped tests, motions 

associated with in-plane bending and coupled out-of-plane bending and torsion were 

observed at different frequencies. Clamped end conditions caused a stronger coupling 

between out-of-plane bending and torsion than is present in the free end case. For either 

end condition, the initial curvature of the specimens statically couples the out-of-plane 

bending moment and the torque. However, the magnitudes of these actions are likely to 

be much less for the free-free case than for the clamped-clamped case. This may be the 

reason for the relatively uncoupled motions associated with out-of-plane bending and 
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torsion observed in the free-free tests. For example, out-of-plane bending dominates the 

motion in the mode at 26.3 Hz for the free-free I-specimen shown in Fig. 27. The same 

I-specimen vibrating at 57.2 Hz, as shown in the photograph in Fig. 28, exhibits a 

torsionally dominant motion. 

Natural frequencies and node locations for the free-free in-plane, out-of-plane, and 

torsional modes for both specimens are presented in Table 3. The natural frequencies 

are in hertz and the node locations are measured in radians from the midspan. The node 

locations are symmetrically located about the midspan. The plot in Fig. 29 compares the 

in-plane, out-of-plane, and torsional natural frequencies of the two specimens. The 

number of nodes is plotted on the horizontal axis and the natural frequency is in hertz 

on the vertical axis. The frequencies associated with the in-plane modes of the I- 

specimen are higher than the frequencies associated with the in-plane modes of the 

channel specimen. This indicates that the I-specimen is stiffer radially. The data for the 

two specimens show increasing frequencies with increasing number of nodes in the 

modes. The in-plane natural frequencies for the channel specimen are consistently 15-25 

% lower than the corresponding I-specimen frequencies. The curves in Fig. 29 (B) cor- 

respond to the natural frequencies of the out-of-plane flexure and torsional modes of 

both test specimens. The torsional natural frequencies associated with the I-specimen 

are consistently higher than the corresponding channel modes indicating that the I- 

specimen is stiffer with respect to torsion. The natural frequencies for the out-of-plane 

flexural modes for the two specimens coincide. 

The results of the clamped-clamped vibrational tests for the I-section and channel 

section specimens are presented in Table 4. The frequencies are in hertz and the node 

locations are in radians measured from the midspan. The clamped ends are counted as 

two nodes. Thus, two nodes is the minimum number in a mode for the clamped-clamped 
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Table 3.   Natural frequencies and node locations of the free-free modes 

No. of Freq Node Locations 
Nodes Hz Radians from Midspan 

I-specimen 
In-plane 2 25.8 -0.61 0.63 

3 78.3 -1.09 -0.02 1.05 
4 151.0 -1.22 -0.43 0.43 1.23 
5 259.0 -1.30 -0.70 -0.01 0.66 1.29 
6 388.0 

Out-of-plane 3 8.1 -1.16 0.02 1.16 
4 26.3 -1.30 -0.48 0.48 1.28 

Torsion 3 57.2 -0.75 0.02 0.72 
4 97.5 -0.98 -0.30 0.30 0.95 
5 146.0 -1.08 -0.51 0.01 0.53 1.08 
6 200.0 1.23     -0.92 -0.29 0.29 0.87      1.20 

Channel specimen 
In-plane 2 18.4 -0.65 0.59 

3 65.0 -1.10 -0.00 1.11 
4 128.0 -1.22 -0.49 0.51 1.23 
5 205.0 -1.31 -0.75 0.01 0.75 1.32 
6 280.0 

Out-of-plane 3 7.4 -1.14 -0.01 1.15 
4 26.1 -1.28 -0.45 0.46 1.30 

Torsion 3 47.3 -1.07 0.02 1.01 
4 87.5 -1.19 -0.47 0.44 1.16 
5 137.0 -1.20 -0.68 0.01 0.66 1.18 
6 188.0 1.23     -0.92 -0.29 0.29 0.87       1.20 
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Figure 29. Comparison of free-free natural frequencies: The in-plane and out-of-plane natural fre- 
quencies for both test specimens are shown in the two plots. The number of nodes in a 
mode is plotted on the horizontal axis and natural frequency in hertz on the vertical axis. 
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Table 4.   Natural frequencies and node locations of the clamped-clamped modes 

No. of Freq Node Locations 
Nodes Hz Radians from Midspan 

I-specimen 
In-plane 3 57.8 -1.57 0.00 1.57 

4 127.2 -1.57 -0.57 0.58 1.57 
5 233.0 -1.57 -0.72 0.00 0.75 1.57 
6 350.6 -1.57 -0.94 -0.26 0.28 0.94 1.57 
7 490.2 -1.57 -1.01 -0.49 -0.01 0.48 1.01 1.57 
8 617.3 

Out-of-plane 2 
3 

8.2 
29.8 

-1.57 
-1.57 -0.04 

1.57 
1.57 

4 64.3 -1.57 -0.343 0.49 1.57 
5 110.4 -1.57 -0.62 -0.01 0.58 1.57 
6 157.8 -1.57 -0.85 -0.28 0.25 0.88 1.57 
7 164.7 -1.57 -1.02 -0.42* 0.08 0.54 1.08 1.57 
8 207.4 -1.57 -1.23 -0.74 -0.24 0.22 0.73 1.20 1.57 
9 254.7 -1.57 -1.28 -0.80 -0.37 0.07 0.43 0.85 1.31 1.57 

10 314.7 

Channel specimen 
In-plane 3 44.6 -1.57 -0.01 1.57 

4 99.1 -1.57 -0.58 0.61 1.57 
5 176.0 -1.57 -0.84 -0.14 0.82 1.57 
6 276.7 -1.57 -0.98 -0.29 0.28 0.94 1.57 
7 413.0 

Out-of-plane 2 
3 

7.4 
25.4 

-1.57 
-1.57 0.09 

1.57 
1.57 

4 55.4 -1.57 -0.40 0.35 1.57 
5 91.1 -1.57 -0.60 -0.05 0.60 1.57 
6 148.8 -1.57 -0.85 -0.28 0.27 0.83 1.57 
7 155.2 -1.57 -1.00 -0.29 -0.01 0.35 0.90 1.57 
8 187.7 -1.57 -1.26 -0.76 -0.26 0.25 0.76 1.26 1.57 
9 216.0 -1.57 -1.26 -0.84 -0.37 0.06 0.37 0.72 1.20 1.57 

10 265.0 

Node near the force actuator 
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specimen tests. In general, the nodes are distributed symmetrically about the midspan 

except when a node falls close to the force actuator, which tends to distort the mode 

shape. 

The in-plane and out-of-plane natural frequencies for both specimens are compared 

in Fig. 30. The response of the two specimens is qualitatively the same. The in-plane 

natural frequencies of the I-specimen are consistently higher. The first out-of-plane 

mode for the two specimens is nearly identical, which is similar to the coincident out- 

of-plane flexural modes observed for the two specimens in the free-free tests. The natural 

frequencies of the I-specimen for subsequent out-of-plane modes are higher than the 

corresponding channel specimen frequencies. The reduction of the increase in frequency 

with increasing number of nodes in Fig. 30 (B) at six nodes is explained by a softening 

of the end restraint conditions. 

Static Test Data 

The experimental data from the static tests is presented in plots of load versus dis- 

placement. The flexibility influence coefficients were calculated using a least squares 

routine which fitted the best plane to the data. The load-displacement plots will be dis- 

cussed first followed by the data reduction scheme and the flexibility influence coeffi- 

cients. 
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Figure 30. Comparison of clamped-clamped natural frequencies: The in-plane and out-of-plane na- 
tural frequencies for both specimens are compared in the two plots. The number of nodes 
in a mode is plotted on the horizontal axis and natural frequency in hertz on the vertical 
axis. 
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Load-Displacement Plots 

In the ensuing presentation of the load-displacement plots, each figure will present 

the data for both specimens. The data associated with the I-specimen will be presented 

in the (A) part of each figure and the data for the channel specimen will be presented in 

the (B) part. The data from the in-plane static tests will be plotted as radial load versus 

radial, lateral, and twist displacements for various values of the moment arm. The out- 

of-plane static test data will be presented as lateral load versus radial, lateral, and twist 

displacements for various values of the moment arm. The applied torque in either test 

is the product of the applied force and the moment arm. The in-plane test data will be 

presented first followed by the out-of-plane test data. 

The plots of radial load versus radial displacement are presented in Fig. 31. The I- 

specimen data is linear through the maximum radial load and shows no sensitivity to the 

applied torque. This indicates that the flexibility coefficient <xn is small. The channel 

specimen data is linear through a radial load of sixty pounds. The spread in the curves 

for the channel specimen indicates that the channel specimen's flexibility coefficient an 

is not zero. 

The plots of radial load versus lateral displacement are shown in Fig. 32. The I- 

specimen data is symmetrically arranged about the zero torque line (D = 0). The fan 

shape indicates that the flexibility coefficient a23 is nonzero. Nonlinearities appear in 

some of the curves, but the data corresponding to smaller moment arms is linear through 

a radial load of sixty pounds. The channel specimen data is not symmetrically arranged 

about the zero torque line. This indicates that the channel specimen's value for flexibility 

coefficient a23 is dependent on the sign of the torque. The curvature in the data for the 

channel specimen is more pronounced than in the I-specimen data. 
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Figure 31. Radial load versus radial displacement: Radial displacement in inches is plotted on the 
horizontal axis and radial load in pounds on the vertical. The 1-section data is linear and 
insensitive to torque. The channel specimen exhibits nonlinear response and a sensitivity 
to torque. 
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Figure 32. Radial load versus lateral displacement: Lateral displacement in inches is plotted on the 
horizontal axis and radial load in pounds on the vertical. The I-section data is symmet- 
rically arranged about the zero torque line. The channel data is not symmetrically arranged 
indicating a^ is dependent on the sign of the torque. 
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Figure 33. Radial load versus twist displacement: Twist displacement in radians is plotted on the 
horizontal axis and radial load in pounds on the vertical. The 1-section data is symmet- 
rically arranged about the zero torque line. The channel data is not symmetrically arranged 
indicating <x33 i$ dependent on the sign of the torque. 
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The plots of radial load versus twist are presented in Fig. 33. The I-specimen data 

is symmetrically arranged about the zero torque line indicating a consistent value for 

flexibility coefficient oc33. Generally, the data is linear through the highest radial load. 

The data for the channel specimen is not symmetrically arranged indicating that the 

channel's torsional stiffness a33 is dependent on the sign of the torque. The curves are 

linear through a radial load of sixty pounds. 

The plots of lateral load versus radial displacement from the out-of-plane static tests 

are presented in Fig. 34. The I-specimen data shows significant radial displacements in- 

dicating that the flexibility coefficient <x12 is nonzero. This is inconsistent with the 

vibrational experimental data since a nonzero value of a12 couples the in-plane and out- 

of-plane responses. This inconsistency of a nonzero a12 is thought to be due to a ge- 

ometric nonlinear effect of the reference arc of the frame. For inextensional response, 

an out-of-plane displacement in either direction at midspan would cause a radially in- 

ward displacement. This is analogous to a cantilevered beam subject to a transverse load 

in which the axial displacement at the tip is directed inward no matter the sense of the 

applied load. The radial displacement for the channel specimen is also nonzero. It is 

difficult to say how much of the radial deformation is a function of the geometric non- 

linearity and how much is due to the coupling caused by the asymmetric cross section. 

Plots of lateral load versus lateral and twist displacements are presented in Figs. 35 

and 36, respectively. The I-specimen data for the two figures is linear through the max- 

imum lateral load.  The data for the channel specimen exhibits very slight curvature. 

The in-plane and out-of-plane static tests were necessary to generate all three col- 

umns of the flexibility matrix. The frames are stiffer in the radial direction enabling 

higher loads, hence larger torques. The smaller torques in the out-of-plane tests resulted 
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Figure 34. Lateral load versus radial displacement: Radial displacement in inches is plotted on the 
horizontal axis and lateral load in pounds on the vertical. The I-section data is nonlinear 
and nonzero which is inconsistent with previous observations. Channel data is linear and 
shows substantial radial displacements. 
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Figure 35. Lateral load versus lateral displacement: Lateral displacement in inches is plotted on the 
horizontal axis and lateral load in pounds on the vertical. The I-section data is linear 
through the maximum lateral load. The channel data exhibits some curvature. The data 
points are closely spaced. 
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Figure 36. Lateral load versus twist displacement: Twist displacement in radians is plotted on the 
horizontal axis and lateral load in pounds on the vertical. The I-section data is linear 
through a lateral load of three pounds. The channel data is slightly nonlinear. 
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in smaller effects which were difficult to measure reliably. Thus, the data from the in- 

plane tests is regarded as more reliable than the out-of-plane test data. 

Data Reduction 

For the in-plane tests, the load-displacement relations reduce to 

w 
1 

an a13 

fP 

vi = a21 a23 l 
4> «31 «33 

(4.1) 

Many tests for different values of the radial load and moment arm yield an algebraically 

overdetermined system. This situation occurs frequently in experimental research when 

more data are generated than would be required if absolute precision was possible. If 

such precision was possible, only two tests would be required to determine the flexibility 

coefficients. 

The first of Eqs. (4.1) can be interpreted as a plane in the W, P, T space. Similar 

interpretations can be given to the second and third equations. The flexibility coeffi- 

cients were calculated by fitting the best planes to the experimental data using a least 

squares routine. The experimental data were treated in groups in order to better un- 

derstand the response of the frames under different loads. The experimental data was 

divided according to the value of the radial load and the algebraic sign of the torque. 

Thus, flexibility coefficients were calculated for positive and negative torques for each 

value of the radial load. 

For the out-of-plane tests, the load-displacement relations reduce to 
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fQ vh a22    a23 IT 
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(4.2) 

Similar to the in-plane tests, repetitive tests yielded an algebraically overdetermined 

system. The relations in The first of Eqs. (4.2) can be interpreted as a plane in the W, 

Q, T space. Similar interpretations can be given to the second and third equations. The 

flexibility coefficients were calculated by fitting the best plane to the experimental data 

using a least squares routine. Flexibility coefficients were calculated for each value of 

the lateral load. 

In general, the in-plane tests measured the flexibility coefficients more consistently 

than the out-of-plane tests, and the coefficients on the diagonal were measured more 

consistently then the off-diagonal terms. With the exception of a23 and a32 , the off- 

diagonal terms were small in magnitude and had a significant amount of scatter associ- 

ated with them. The a23 terms are significant because of the coupling between 

out-of-plane bending and torsion due to the curved geometry. 

No attempt was made to force the flexibility matrix to be symmetric. Enforcing 

symmetry in the flexibility matrix would substantially alter the values of the off-diagonal 

coefficients. The curved frames loaded at the midspan present geometric nonlinearities 

and the test data indicates this. Forcing the matrix to be symmetric would misrepresent 

the data and therefore the response of the frames. 

Flexibility Influence Coefficients 
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The flexibility influence coefficients for the I-specimen from the in-plane tests are 

presented in Table 5. Flexibility coefficients are presented for radial loads from 20 to 100 

pounds for both positive and negative torques. The second column indicates the alge- 

braic sign of the applied torque. In general, the flexibility coefficients for the I-specimen 

were unaffected by the sign of the torque. 

The values for the flexibility coefficient <xu get gradually smaller with increasing 

value of the radial load indicating a stiffening in the response of the frame. The values 

for flexibility coefficient a33 obtained for negative torques are slightly larger than the 

values obtained for positive torques, however, the difference in magnitudes is small. The 

values for flexibility coefficient <x23 become gradually larger with increasing radial load 

indicating a slight softening in the measured response. The values for flexibility coeffi- 

cients <x13, a31, and a21 are small and are inconsistently measured. Significant scatter in the 

data associated with these coefficients make a reliable determination of their magnitudes 

difficult. This indicates that their affect on the response of the frame is small. This is 

consistent with the uncoupled vibrational response observed in the dynamic tests since 

these coefficients couple the in-plane and out-of-plane static responses. 

The flexibility influence coefficients for the channel specimen from the in-plane tests 

are presented in Table 6. Flexibility coefficients are presented for radial loads from 20 

to 100 pounds for both positive and negative torques. The values for flexibility coeffi- 

cient a„ are consistent with respect to the algebraic sign of the applied torque and with 

respect to the magnitude of the radial load. The values for an for the channel specimen 

are roughly twice the magnitude of corresponding values for the I-specimen. The chan- 

nel specimen does not exhibit the stiffening response observed in the I-specimen. The 

values for flexibility coefficients oc33 and oc23 become steadily larger with increasing radial 

load indicating a softening in the torsional resistance. Further, the values for a33 and a23 

obtained for negative torques are consistently smaller than values obtained for positive 
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torques. This indicates that the torsional stiffness of the channel specimen is a function 

of the algebraic sign of the torque. The values for flexibility coefficients oc13 and a31 differ 

by two orders of magnitude and have opposite signs. The magnitudes of the values for 

a31 depend on the sign of the torque. The scatter associated with these values makes 

reliable determination difficult. The values for flexibility coefficient oc21 are a function of 

the sign of the applied torque and tend to get smaller with increasing value of the radial 

load. 

The flexibility coefficients for the I-specimen from the out-of-plane tests are pre- 

sented in Table 7. Coefficients are presented for four values of the lateral load. The val- 

ues for flexibility coefficient a22 are measured consistently for each value of the lateral 

load. The values for flexibility coefficient cc33 are also measured consistently, however, the 

values are about 20 % smaller than corresponding values obtained from the in-plane 

tests. The values for flexibility coefficients oc23 and a32 are roughly the same magnitude, 

however, their magnitudes are consistently 15-20 % smaller than the values for oc23 ob- 

tained from the in-plane tests. The values for flexibility coefficient oe13 are inconsistently 

measured and the scatter associated with this coefficient is significant. The values for 

flexibility coefficient a12 become steadily larger with increasing lateral load and are about 

100 times larger than the values for ce21 obtained from the in-plane tests. As was discussed 

previously, this is thought to be due to a geometrically nonlinear response similar to the 

end shortening of a cantilevered straight beam. 

The flexibility influence coefficients for the channel specimen from the out-of-plane 

tests are presented in Table 8. Flexibility coefficients are presented for three values of the 

lateral load. The values for flexibility coefficient a22 are measured fairly consistently. The 

magnitude of the values are roughly twice the magnitude of the corresponding values for 

the I-specimen indicating that the channel specimen is twice as compliant laterally. The 

values for flexibility coefficient oc33 become smaller with increasing value of the lateral 

Experimental Results 76 



c 
3 

c 

'3 
£ u 
3 
u u c u 
3 
C 

>> 

'x 

x .5 

2- 

o-£ 

c£ 

c" 

■o 

u 

rt 

oe oo ro — 
— T r- co 

o o o o 

(NOOO't 
<-> vO O <N 
<N O f C> 
code 

St-» Tj- t— 

oo oo oo oo 
Ö Ö o o 

o r- so ON 
00 00 00 V) 
Ö O O © 

O  —  ^ V- 

o o o o 

NMMO 

O © © Ö 

r» o m o 
—. <N —■ wi 

II    II    II    II 

oooo 

Experimental Results 77 



load. This trend is opposite to the trend observed in the values for the a33 from the in- 

plane tests. The values for oc33 from the out-of-plane tests are much smaller than the 

values obtained from the in-plane tests. The values for flexibility coefficient a23 are rela- 

tively consistent and compare more favorably with corresponding values from the in- 

plane tests. The values for a32 are about 60 % of the values for a23. The values for 

flexibility coefficient <x12 are measured consistently and are much larger than the values 

for a21 from the in-plane tests. It is believed that the larger values for a12 is indicative of 

a geometrically nonlinear response. 

The values for a2i and a33 which were obtained from the out-of-plane tests are gen- 

erally smaller than the corresponding values obtained from the in-plane tests. The fact 

that the flexibility coefficients calculated from the two tests are not consistent is dis- 

turbing. The out-of-plane tests used very small lateral loads and smaller torques. The 

resulting displacements due to the torques were correspondingly smaller making them 

more difficult to measure experimentally. Thus, the values for oe23 and a33 obtained from 

the in-plane static tests are considered more reliable. 

Crush Test 

The load displacement curve from the quasi-static crush test is presented in Fig. 37. 

The slope of the curve is roughly linear through a radial load of 400 pounds. The inverse 

of the slope in this region corresponds to au. The value for a„ from the crush test is 

0.64 x 10~3 inches per pound. This value is significantly smaller than the oeu value ob- 

tained from the in-plane static tests. Thus, the crush test exhibits a stifTer radial re- 

sponse. This discrepancy is likely due to the different boundary conditions. The 

experimental boundary conditions for the crush test involved bolting the potted ends to 
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Figure 37.    Crush test load displacement plot:    Load versus radial displacement for the crush test of 
the 1-section specimen. 
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the I-beam where the static tests used clamps. It will be shown in the Chapter 6 that the 

in-plane response is very sensitive to small changes in the boundary conditions. 

The crush test was conducted as part of a related research effort by Mr. E. Moas, 

Graduate Research Assistant, and Professor O. H. Griffin that is sponsored by the 

landing and Impact Dynamics Branch, NASA Langley Research Center. The failure and 

post failure response of the frame will be addressed in detail by these researchers. The 

failure of the frame will be presented here in an effort to be complete without benefit of 

detailed analysis. 

The initial failure event involved two simultaneous buckles in the web of the speci- 

men. One buckle occurred at midspan and the other was located about eight inches to 

one side. The buckles are shown in Fig. 38. The initial failure occurred at a radial load 

of 1048 pounds. The strain in the region of the buckles at failure was significantly lower 

than the anticipated material failure strain suggesting a local instability possibly 

exacerbated by the unsymmetric layup in the web. 
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Chapter 5 

Analysis 

Several structural analyses used to predict the linear static and vibrational response 

of the curved composite test specimens are discussed in this chapter. The first section 

traces the development of Vlasov's thin-walled, curved beam theory. One-dimensional 

continuum solutions for the decoupled in-plane and out-of-plane vibrational, and the 

in-plane static responses, are presented. Finally, the finite element computer program 

developed by Noor et al. (Ref. 7) is discussed. The finite element is based on a Vlasov- 

type thin-walled curved beam theory and includes the additional effects of transverse 

shear deformation and rotatory inertia. The finite element was developed specifically for 

the analysis of curved thin-walled beams with open sections. 
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Thin-Walled Curved Beam Theory 

The thin-walled curved beam theory presented here was originally developed by 

Vlasov (Ref. 23). Culver (Ref. 22) used Vlasov's theory in his solution for the decoupled 

out-of-plane vibrational response for a curved thin-walled beam with a doubly symmet- 

ric cross section. Culver included the inertia terms by treating them as a periodic dis- 

tributed static load. In this development, the strain energy relations are formed similar 

to Vlasov and then the kinetic energy is derived in a manner consistent with the 

kinematic assumptions and includes the inertial effects due to warping displacements. 

Hamilton's principle is used to obtain the differential equations of motion for a curved 

beam with a single plane of symmetry coinciding with the plane of curvature. The the- 

ory is extended by incorporating the constitutive relations of laminated composites into 

the Hooke's law expression. 

Strain Energy 

A ring segment is defined with respect to cylindrical coordinates (r,0,y) as shown in 

Fig. 39. The radius measured from the origin O is written as r = a-z, where a is the radius 

of the circle through the centroids of each cross section normal to the circumferential 

direction, and z is a cross-sectional coordinate directed radially inward toward origin O. 

Coordinate x is defined to be the arc length on the centroidal circle (x= aö). At a generic 

cross section, the orthogonal coordinates x, y, and z are defined by the right-hand-screw 

rule. The cross section is assumed to be uniform along the circumference and to be 

symmetric about the r-d (or z-x) plane. Thus, the cross-sectional axes y and z are prin- 

cipal centroidal axes of the cross section. 
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Figure 39. Cylindrical and cross-sectional coordinates: The sketch shows a cylindrical coordinate 
system for a curved beam with the origin O at the center of the beam and a cross-sectional 
coordinate system (x,y,z) at some generic point on the arc. 
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Relative to the cross-sectional coordinate axes y and z, shell coordinates s and £ are 

defined to describe a thin-walled element of the curved beam. A contour line C is de- 

fined that is at the middle of the wall thickness, and s is the arc length coordinate along 

this contour. The contour is a continuous arc with a piecewise continuous tangent. The 

tangent to the contour can jump at junctions between flanges and webs, for example. 

The shell thickness coordinate £ is measured normal to the tangent of the contour at s; 

£ = 0 on the contour, and |£| < h/2 , where h is the wall thickness. In general, h can be 

a function of s. The positive directions of coordinates s and C are fixed by defining 

(C,s,0) as a right-handed orthogonal set of directions at a generic point in the shell space 

as shown in Fig. 40. A material point in the wall of an element in the cross section lo- 

cated at s and ( is also described by coordinates y and z according to the relation 

y(s>£) = y(s) + (sina(s) (5.1) 

z(s, 0 = z(s) - C cos o(s) (5-2) 

in which y(s) and z(s) are the coordinates of the contour C, and a is the angle between 

the positive y-axis and the positive tangent direction on the contour at s. Angle a is 

positive if measured counterclockwise when viewed down the positive 0-axis. On the 

contour, the differential coordinates satisfy 

—  =   cos a -r~  =   sin a (5.3) 
ds ds 

From Eqs. (5.1-5.3) the following derivatives are obtained for later use 

K  = (1 + C/Rs) cos a  ,      M-  = (1 + C/Rs) sin« (5-4) 
OS OS 
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8y        . dz f, « -rr-  =   sin a   ,       -rr-  =   - cos a (5.5) 

in which 1/RS = da/ds, and Rs is the radius of curvature of the contour in the y-z plane. 

The shear center for the section lies along the z-axis at z = Zp , because of the as- 

sumed symmetry. In thin-walled beam theory, the coordinates of a point on the contour 

relative to the shear center are r(s), which is measured along the normal to the contour 

at s, and q(s) which is measured along the tangent to the contour at s. Coordinates r and 

q are called contour coordinates. Coordinate r(s) is not to be confused with the cylin- 

drical coordinate r introduced earlier. In general, the cylindrical coordinate r is replaced 

with a-z. Thus, a material point in the wall located at s and £ can be defined in terms 

of r, q, y, and z as follows 

r(s) + C = y sin a — (z — zp) cos a (5.6) 

q(s) = y cos a + (z — zp) sin a (5.7) 

The displacement components in the 0-, y-, and z- directions are designated u, v, and 

w, respectively.  In Vlasov's curved beam theory, these are given by 

u(0,y,z) = U(0) - y0z(0) + z0y(0) - <D(S,QZ(6) (5.8) 

v(0,y,z) = V(0)- (z-Zp)0x(0) (5-9) 

w(0,y,z) = W(0) + y<£x(0) (5.10) 

in which U(0) is the circumferential displacement of the centroid, V(0) and W(0) are 

the y- and z- direction displacements, respectively, of the shear center, <j)x{d) is the rota- 

tion of the cross section about the shear center and is positive counterclockwise when 
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Vp. (O.Zp) 

Figure 40. General symmetric cross section: The sketch illustrates the cross-sectional coordinates for 
an open, thin-walled circular section. Contour coordinates: r(s) and q(s). Shell wall coor- 
dinates: s, (• Cartesian coordinates of contour: y(s), z(s). 
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viewed down the positive x-axis, 0y(0) and 4>z(d) are rotations about the y- and z- axes, 

respectively, which are positive counterclockwise when viewed down their positive axes. 

Except for the term COT in the expression for u, the displacements in Eqs. (5.8-5.10) 

represent a deformation for which plane sections remain plane. The term COT represents 

warping of the cross section. 

In cylindrical coordinates the linear strain-displacement equations are 

He = (u><? ~ w)/(a ~ z) 

£yy = v'y 

«zz = w,z 
(5.11) 

Vey = u-y + v>e/(a - z) 

Yez = u-z + (w,0 + u)/(a - z) 

7yz        *'z   '       >y 

in which partial differentiation with respect to a coordinate is denoted by a comma with 

the coordinate following as a subscript. Substituting the displacements of Eqs. (5.8-5.10) 

into the strains in Eqs. (5.11) results in 

(a - z)eeg = U' - W - y{4>\ + 0X) + zc6'y - COT' (5.12) 

£yy = £zz = 0 (5.13) 

(a - z)Yey =  -(a - zp)c/>z + V - (z - zp)(c/>'x - c£z) - (a - z)co,yr   (5.14) 

(a - z) yöz = W + U + ac£y + y(c/>'x - <f>z) - [(a - z)co,z + CO]T      (5.15) 

Vyz = 0 (5.16) 
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in which a prime represents an ordinary derivative with respect to 9 . Vanishing of the 

strains in Eqs. (5.13) and (5.16) indicates there is no distortion within the cross section. 

The rotation-displacement relations are taken as 

0y =   _(W + U)/a (5.17) 

4>z = V'/(a - Zp) (5.18) 

and the unit twist-rotation relation is taken as 

T = Wx - «z)/(a - Zp) (5-19) 

As a consequence of Eqs. (5.17-5.19), the transverse shearing strains yey and yez in Eqs. 

(5.14) and (5.15) are rewritten as 

(a - z)yey =   - [(a - zp)(z - zp) + (a - z)a>,y]T (5.20) 

(a - z)yez = [(a - zp)y - (a - z)co,z - W]T (5.21) 

The transverse shear strain components in the shell coordinates ((,s, 6) are yBs and ye{. 

They are given by the transformation equations 

ves = yey
cosa + yözsina (5-22) 

Yec = Vey 
sin a - yezcos a (5-23^ 

After substitution of Eqs. (5.20) and (5.21) into (5.22) and (5.23) , the transverse shear 

strains in shell coordinates are 
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(a - z)y9s = [(a - z )(y sin a - (z - zP) cos a) 
(5.24) 

— (a — z)(cy,y cos a + <y,z sin a) — a sin a]r 

(a — z)yec = [ — (a — z„)(y cos a + (z — zD) sin a) 
(5.25) 

— (a — z)(co,y sin a — co,z cos a) + co cos a]r 

From the chain rule and Eqs. (5.4) and (5.5), partial derivatives of the warping function 

in shell coordinates are 

co,s = (1 + £/Rs) (co,y cos a + co,2 sin a) (5.26) 

(o,{- = co,y sin a — co,z cos a (5.27) 

As a consequence of Eqs. (5.6) and (5.7) for the contour coordinates, and Eqs. (5.26) and 

(5.27), the transverse shear strains are 

(a - z)y6s = [(a - zp)(r(s) + Q - (a - z)(l + WVs - wsina]T  (5.28) 

(a - z)y0£ = [ - (a - zp)q(s) - (a - z)(y,^ + co cos a]r (5.29) 

Using Eqs. (5.4) and (5.5) it can be shown that 

(a — z)      a   /     (n     \ , 
( a - z )   =   (a - z)(! + C/Rs)   «,s + ^si11«        (5-3°) (1 + C/Rs)   5s V a - z 

(a — z)   — f a _ z j   =   (a — z)co,^ — wcosa (5.31) 

and with these identities Eqs. (5.28) and (5.29) are rewritten as 
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(a - z)yes = |(a - zp) (r(s) + Q -   ({
a
+ ^ -jfc (y^)jr      (5.32) 

(a - z)y* = { - (a - zp)q(s) - (a - z)2 -|- ( -^ )}T (5.33) 

The Vlasov assumption is that the transverse shear strain vanishes on the contour; 

that is, y8s(s, f = 0) = 0 . Let co(s, £ = 0) = w(s), and the Vlasov assumption implies 

from Eqn. (5.32) that 

(a-zp)r(S)-(a-z)^(T5¥)-0 (5.34, 

Integrating Eqn. (5.34) with respect to s from s = 0 to s, we write 

<u(s) = (a - zp) (a - z(s)) 
r(8)        ds (5.35) 

'0 
(a - z(s) f 

in which the origin of s is selected such that the integral in Eqn. (5.35) vanishes if the 

integration limits are over the entire contour C. For thin rings, the largest cross-sectional 

dimension is less than one-tenth the radius a. Thus, a-z ca a, and Eqn. (5.35) is approxi- 

mated by 

a)(s) =      r(s)ds 
^0 

(5.36) 

which is the same expression as used in straight beam theory. The geometric interpreta- 

tion of cö in Eqn. (5.36) is twice the area swept-out by a ray whose one end is fixed at 
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the shear center and the other end moves on the contour from s = 0 to s. For this reason, 

the contour warping function of Eqn. (5.36) is called the sectorial area. 

The Kirchhoff-Love assumption is appropriate for the thin-walled shell elements of 

the curved beam. This implies the transverse shear strain component yg( vanishes. Set- 

ting the coefficient oft in Eqn. (5.33) to zero, and then integrating with respect to £, 

we obtain 

w(s» 0 = E(a — ZpMs) + (a — z)c5(s)]/ cos a + £co(s) (5.37) 

in which c5(s) is the thickness warping function. The first term on the right-hand-side 

of Eqn. (5.37) is independent of £ and is identified as the contour warping function 

<y(s). As a result of this identification, the expression for the thickness warping function 

is 

(a — zn) -TT 
w(s)= "7^lTq+ R7 (5,38) 

where 

1/RÖ =   cosa/(a - z) (5.39) 

The quantity 1/R9 is the normal curvature of the 0-curve in the shell element reference 

surface. Thus, the warping function for the cross section is 

w(s, 0 = w(s) + Cw(s) (5.40) 

with the contour warping function cö(s) given in Eqn. (5.35) and the thickness warping 

by Eqn. (5.38). 

Analysis 93 



The distribution of the shear strain component y6s through the thickness of the shell 

wall is approximated as a linear function of £. A series expansion in £ of the coefficient 

of the unit twist T in Eqn. (5.32), subject to the Vlasov assumption (5.34), Eqs. (5.2), 

(5.4-5.7), and (5.38-5.40), results in 

f 2(a - zD)2 , ) 
(a - z)ygs = j    (a _ 4    C + 0(C2)|T (5.41) 

The terms of order £2 and higher are neglected in Eqn. (5.41). 

The nonzero strains are iM, Eqn. (5.12), and y6s in Eqn. (5.41). These can be rewrit- 

ten in the form 

(1 - z/a)(l + S/R*)«:** = e - y*z + z*y - w(T'/a) (5.42) 

(1 - z/a)(l + C/Rö)yös =     1 _Z^   CT (5.43) 

where 

(a - z) = a(l - z/a)(l + C/Rö)                                  (5.44) 

e = (U' - W)/a (5.45) 

KZ = {4>\ + 0x)/a (5-46) 

Ky = 0'y/a (5.47) 

Eqn. (5.44) follows from Eqn. (5.2) and from the definition of 1/R, Eqn. (5.39). The 

quantity e Eqn. (5.45) represents the circumferential stretching strain of the centroidal 

line, KZ is the change in curvature out of the plane of the curved beam, and Ky is the 
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change in curvature in the plane of the curved beam. Substituting Eqn. (5.1) for y, Eqn. 

(5.2) for z, and Eqn. (5.40) for a», into Eqn. (5.42) gives the circumferential strain as an 

explicit function of £.  The result is 

(1 - z/a)(l + C/Rö)eöe = e - yj<z + ZK   - w(r'/a) 
(5.48) 

— £[ sin a KZ +   cos a Ky + ca(r'/a)] 

The strain energy increment for the curved beam is 

<5U =   f    (oeeöe9e + aös<5yös)dVol (5.49) 
JVol 

in which aee is the circumferential normal stress and aes is the shear stress. The differen- 

tial volume element is 

dVol = (a - z)d0dA - (1 + £/Rs)(l + C/R*)dC(l - z/a)dsad0        (5.50) 

in which the area element within the 0-cross section is expressed in terms of shell coor- 

dinates s and £• The strain increments 5ees and öySs in Eqn. (5.49) are obtained in terms 

of the increments of the bar strains <5e, <SKZ, 8KV and ^T from Eqs. (5.43) and (5.48). 

These strain increments are substituted into the strain energy increment (5.49) using the 

volume element in Eqn. (5.50). Integrations over the cross section are performed, and 

the resulting strain energy increment for the curved beam is written as 

<5Ü =  f 2[N<5e + My<5Ky + MZSKZ + MJär'/a) + Ts<5T]ad0 (5.51) 
'I 

in which 6 e (dlt 62), 92 > 8lt and the curved beam resultants are defined by the contour 

integrals 
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1 N =     Nöds (5.52) 

ML =     (Nöz - Me cos a)ds (5.53) 

Mz = -   (N&y + M0sin a)ds 

Jr 
(5.54) 

M, (Ngco + Möa>)ds (5.55) 

Ts = 2(1 - zp/a)2 M 0S 

•>c 
(1 - z/a) 

ds (5.56) 

The shell resultants appearing in the contour integrals of Eqs.   (5.52-5.56) are defined 

by the following integrals through the thickness of the shell elements: 

(Nö, M0) =  f (1,0^(1 + £/Rs)dC (5.57) 

Mes= fc^,(l + C/Rs)dC (5.58) 
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The curved beam resultant N acts in the circumferential direction at the centroid of the 

cross section. The bending resultants My and Mz are vectorally directed along the posi- 

tive y- and z-axes, respectively, by the right-hand screw rule. The bimoment Mm is taken 

to act in the circumferential direction at the shear center. The bimoment is statically 

equivalent to zero force and zero moment. The Saint Venant torque Ts is directed cir- 

cumferentially and also acts at the shear center. 

Kinetic Energy 

The kinetic energy is 

T = JL 
2 

(u2 + v2 + w2)pdVol (5.59) 
''Vol 

where p denotes the mass density, and the overdot denotes a partial derivative with re- 

spect to time. Time derivatives of the displacements are determined from Eqs. (5.8-5.10). 

Using Eqs. (5.1), (5.2), and (5.40), these time derivatives can be written explicitly in 

terms of contour coordinates y(s), z(s), co(s), and <y(s), and the thickness coordinate £. 

The results are 

u(s, 6, C,t) = U(0,t) - y(s)<£z(0,t) + z0y(0,t) - ä>i(0,t) 

- C[0z(0,t) sin <x(s) + 0y(0,t) cos <x(s) + co(s)r(0,t)] 
(5.60) 

v(s,0,C,t) = V(0,t) - (z(s) - Zp)^x(ö,t) + C0x(ö,t) cos a(s) (5.61) 

w(s, 9, C,t) = W(0,t) + y(s)0x(0, t) + C0x(0,t) sin a(s) (5.62) 
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These relations for the velocity components are substituted into the kinetic energy (5.59) 

along with the volume element (5.50). Integration over the cross section is performed 

and the result is 

1   fÖ2.T     • T-f J   HTm» adö (5.63) 

in which the 7x1 velocity vector ü is 

o(0,t) = [U, V, W, 4>x, 4>y, K *]' (5.64) 

and the 7x7 symmetric mass matrix m is 

Ü     V    W    <t>x    4>y    <t>z    i 

mH      0     0     0   m15 m16 m17 

m22   0   m24   0 0     0 

m33 m34   0 0     0 

mu   0 0     0 

m55 m56 m57 

^66   ™67 

Symm m77 

(5.65) 
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The nonzero elements of the mass matrix are the contour integrals 

mn = m22 = m33 

m 24 

=     m(l — z/a) ds 

(mz — I^cosa)(l — z/a) ds 

=  -     (my + Ifsina)(l - z/a) ds 

—      (mi + If<y)(l — z/a)ds 

=     (-m(z - zp) + I^cosa)(l - z/a) ds 
Jr 

m16 =  -m34 

m17 = 

m 56 

m. 

11144 =   I (m(r2 + q2) + 2Ifr + IK)(1 - z/a) ds 

m55 =   I [niz2 ~~ 2I^zcosa + 1^ cos a](l — z/a) ds 
•'c 

[—myz + I^ycosa — zsina) + 1^ sin a cos a](l — z/a) ds 

57 =      [-mzcö + I,r(-za> +   cos a cö) + I^cosacu](l - z/a) ds 

f 2 tn66 =     [my   + 2I^ysina + 1^ sin a](l — z/a) ds 

(5.66) 

^67  = [myco + I?(yco + cosina) + I^sinaS](l — z/a) ds 

m 77 
.—2 [m? + 2Iccocy + I^co ](1 - z/a) ds 
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in which the mass properties of the shell wall are 

(m, I{) IK) = (1, C, C2)P(1 + C/Rs)(l + C/Rö)d{ (5.67) 

Jh 

Hamilton's Principle 

The variational statement of dynamic equilibrium is Hamilton's principle. For no 

external loads acting on the curved beam, Hamilton's principle is 

(<5T - (5U)dt = 0 (5.68) 

where the time limits satisfy t2 > t,. The four independent functional degrees of freedom 

are U, V, W, and $x. Rotations <py and 4>z, and the unit twist T, depend on on U, V, 

W, and <px as shown by Eqs. (5.17-5.19). Lagrange multipliers are introduced to keep the 

seven functional degrees of freedom U, V, W, <£x, <py, 4>z, and r in the functional inde- 

pendent. The shear force Qz is the Lagrange multiplier associated with rotation (j)v shear 

force Qy is the Lagrange multiplier associated with rotation 4>z, and the torque T is the 

Lagrange multiplier associated with unit twist r. The augmented functional is 

fu 
(ST - <5U )dt = 0 (5.69) 
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where 

T* 

<5U' = <SU 4-  [ 2{Qy[5V'/(a - zp) - <5</>J + QZ[(<SW + <5U)/a + <50y] 
J*i (5.70) 

+ T[(<50'x - <50z)/(a - zp) - ST]} adö 

The variation of the kinetic energy obtained from Eqn. (5.63) and the variation of the 

augmented strain energy in Eqn. (5.70) are substituted into the variational principle Eqn. 

(5.69). In addition Eqs. (5.45-5.47) and (5.51) are substituted in the appropriate manner 

into the variational principle. After these substitutions, the inertia terms are integrated 

by parts with respect to time, and the variations in the degrees of freedom 

(5U, <5V, (5W, <50x, ö(t>y, dcj)z, and <5T at times t{ and t2 vanish according to Hamilton's 

principle. Integrating by parts with respect to 8 yields the Euler-Lagrange equations as- 

sociated with each functional degree of freedom. 

<5U: -mnÜ - ml54>y - m160z - m]7T + N'/a - Qz/a = 0 (5.71) 

<5V: -m22V - m240x + Q'y/(a - zp) = 0 (5.72) 

<5W: -m33W - m340x + N/a + Q'z/a = 0 (5.73) 

<50x: -m24V - m34W - m^ - Mz/a + T'/(a - zp) = 0 (5.74) 

ö<py: -m15Ü - m550y - m56<£z - m57T + M'y/a - Qz = 0 (5.75) 

<5</>z: -mi6Ü - m560y - m^ - rn^-fi + M'z/a 
(5.76) 

+ Qy + T/(a - Zp) = 0 

5x: -m17Ü - m514>y - m614>z - m77r + M'Ja - Ts + T = 0 (5.77) 
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The seven boundary conditions at 0 = 0, and 0 = 02 are 

ential Natural 

U N 

V (1 - Zp/ar'Qy 

w Qz 

</>x (1 - Zp/a)-1! 

4>y My 

4>z Mz 

T Mö) 

(5.78) 

Hooke's Law 

It is assumed that the shell elements comprising the thin-walled curved beam are 

laminated from materials having monoclinic symmetry with respect to a ^-surface (a 

surface on which £ is constant). Monoclinic symmetry is exhibited by an ofT-axis lamina 

reinforced with continuous and aligned fibers. This is the case for the graphite-epoxy 

specimens in this study. The fiber direction, commonly labeled the 1-axis, is established 

by a counterclockwise rotation through an angle 0 from the positive s-axis to the 1-axis, 

looking down the positive £ -axis. In beam theories, the lateral stresses are assumed to 

vanish in Hooke's law. This assumption implies that stress components ass, oa, and <JS( 

are zero in the generalized strain-stress relations. Thus, for an off-axis lamina the 

strain-stress relations are 
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y0C = S'44c7ÖC (5.79) 

VsS  =   ^'62a9e  +   S'66(7ÖS 

in which the off-axis compliances are 

S'22 = S„n4 + (2S12 + ymV + S22m
4 

S'26 = S'62 = (2Sn - 2S12 - S66)mn3 - (2S22 - 2S12 - S66)m
3n 

2 2 <5-80) 
S'44 = S44m   + S55n 

S'66 = 2(2S„ + 2S22 - 4S12 - S66)mV + S66(m
4 + n4) 

with   m =  cos 9 and n =   sin 6.    The on-axis compliances in terms of engineering 

constants are 

S11 = 1/Ej ,  S21 =   —vnIEx ,  S22 = 1/E2 
(5.81) 

S44 = 1/G23 ,  S55 = 1/G13 ,  S66 = 1/G12 

The transverse shear strain y„c was assumed to vanish by the Kirchhoff-Love assump- 

tion. As a consequence, the second of Eqs. (5.79) is neglected. Writing the inverse of the 

two remaining equations in Hooke's law from Eqs. (5.79) we have 

aee — R-22£0# + ^-26^08 
(5.82) 

a9s  =   ^2^69  +   ^öö^s 

in which the reduced transformed stiffnesses are 

(R22, R26, R66) = (S'66, — S'26, S'22)/[S'22S'66 — (S'26) ] (5.83) 
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For an isotropic material, R22 = E, RM = 0, R66 = G, where E and G are the modulus of 

elasticity and the shear modulus, respectively. 

The Hooke's law for the curved beam is obtained as follows. The strain relation for 

iie in Eqn. (5.48) and the relation for ye% in Eqn. (5.43) are substituted into Eqs. (5.82) 

to get the stresses in terms of beam strains e, Ky, KZ, r'/a, and T. These stress-beam strain 

equations are in turn substituted into the definitions of the shell resultants 

Nfl, M„, and Mes in Eqs. (5.57) and (5.58). Finally, these shell resultant-beam strain re- 

lations are substituted into the definitions of the beam resultants in Eqs. (5.52-5.56). The 

result of these manipulations is 

N EA     ESy —ESZ     ESjy EH e 

My El —FI     —El *^*zy           coy EHC Ky 

Mz = FT        FI Jjlzz      L^looz -EHS K2 

M„ El i"1coco -EHq x'/a 

Ts Symm GJ T 

(5.84) 

in which 

EA = a220 ~ z/a)   ds (5.85) 

ESy = (a22z — b22 cos a)(l — z/a)   ds (5.86) 
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/• 

ESZ = (a22Y + b22 sin a)(l - z/a) 'ds (5.87) 
Jc 

c 
ESB = (a22co + b22w)(l - z/a) !ds (5.88) 

>>c 

f 

EH = 2(1 - zp/a)2 b26(l - z/a)-2ds (5.89) 
Jc 

f 
19                                                                           9                                      1 

EIyy =     (a22z   — 2b22zcosoe + d22 cos a)(l — z/a)   ds (5.90) 
4 

/» 

EIzy = (a22zy + b22(zsina — y cos a) — d22 sin a cos a)(l — z/a) !ds (5.91) 
<>c 

Elcoy =     (^2225) + b22(za> — c5 cos a) — d225 cos a)(l — z/a)_1ds (5.91) 
4 

Analysis 105 



EHC = 2(1 - zp/a)2   (b26z - d26 cos a)(l - z/a) 2ds (5.93) 

klzz 
2_w, 7-,,-i (a22y   + 2b22ysina + d22 sin a)(l - z/a)   ds (5.94) 

El     = 
-i   v-1 (a22yöJ + b22(ya> + wsinoc) + d22<ysinoc)(l - z/a)   ds       (5.95) 

EHS = 2(1 - zp/a)2   (b26y + d26sina)(l - z/a) 2ds (5.96) 

,2    ,    ^u    _~    ,    A    ~2V1 ^UV^A* (5.97) 
EIcoco =     (a22^   + 2b22«« + d22«y )(1 - z/a)   ds 

EHa = 2(1 - zp/a)' 
-2, (b26cö + d26S)(l - z/apds (5.98) 
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GJ = 4(1 - zJa)4   d66(l - z/ar3ds (5.99) 

In the contour integrals of Eqs. (5.85-5.99), which define the curved beam stiffnesses, 

coefficients in the integrals appear that are based on integrated stiffness properties 

through the shell wall thickness. The formulas for these integrated stiffness properties 

are 

(a22, b22, d22) =   I (1, C, C2)R22(1 + C/Rs)(l + C/Re)_,dC (5.100) 

(a26, b26, d26) =    (l, c, C2)R26(1 + C/Rs)(i + C/R,r]dC (5.101) 

d66    = R66C2(l + C/RsXi + C/Rö)_1dC (5-102) 

Within the cross section, the positions of the modulus-weighted centroid, shear 

center, and contour origin (position where s = 0), are determined by requiring selected 

stiffness terms in Eqs. (5.84) to vanish. Requiring the modulus weighted first moments 

ESy and ESZ to vanish locates the z and y positions, respectively, of the centroid. The y 

and z positions of the shear center are determined by setting the modulus-weighted first 
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sectorial moments EI„,y and E\mz, respectively, to zero. The condition that the modulus- 

weighted sectorial area ES„, vanishes determines the position of the contour origin. 

Finally, the direction of the principal axes is determined from the condition that the 

modulus weighted product moment EI2y equals zero. Thus, Hooke's law for a curved 

beam using principal coordinates of the cross section simplifies to 

EA 0      0 0 EH 

Iyy         0 0 -EHC 

t^zz 0 -EHS 

FI -EHq 

Symm GJ 

(5.103) 

The stiffness matrix in Eqn. (5.103) is not diagonal because of the presence of the "EH" 

terms. If the laminated wall construction is specially orthotropic, then the terms 

EH = EHC = EHS = EHq = 0 , and the stiffness matrix is diagonal. For a specially 

orthotropic laminate, the lamina fiber angles (6) are either zero or ninety degrees so 

S'26 = 0 in the second of Eqs. (5.80), and R26 = 0 in Eqs. (5.83). For R26 = 0, Eqn. (5.101) 

shows that shell stiffnesses a26 = b26 =d26 = 0, and consequently EH, EHC, 

EH„ and EHq all vanish. 

For a symmetric laminated wall construction, shell stiffness b22 in Eqn. (5.100) and 

b26 in Eqn. (5.101) are zero. This simplifies the computation of the beam stiffnesses in 

Eqs. (5.85-5.99). The term EFI in Eqn. (5.89) is zero if b26 is zero, but terms 

EHC, EHS, and EHq are not zero because d26 is not zero. The shell stiffness term d26 re- 

flects bend-twist coupling of symmetric laminates containing off-axis plies. For straight 

beams with symmetric laminated walls, Bauld and Tzeng (Ref. 27) have derived similar 

terms to the EH terms presented here. These authors point out that Vlasov's assumption 

that ygs — 0 on the reference surface is only applicable to symmetric laminated wall con- 

struction.   For thin curved beams, the largest cross-sectional dimension is less than 
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one-tenth the radius a. It is permissible, then, to neglect z(s)/a and zp/a with respect to 

unity in all the formulas presented for the curved beam. For thin walls h/Rs and h/R„ 

are also small with respect to unity, and are neglected in the shell wall stiffness formulas 

of Eqs. (5.100-5.102). Consequently, for thin curved beams with thin wall cross sections, 

the formulas for the beam stiffnesses, Eqn. (5.85-5.99), reduce to those of a straight 

beam theory. 

If the thin-walled curved beam is made of an isotropic and homogeneous material, 

then the reduced stiffnesses are R22 = E, R26 = 0, and R66 = G. Using principal coordi- 

nates in the cross section, and assuming a thin curved beam with thin walls made from 

an isotropic and homogeneous material, Hooke's law is 

N = EAe 

y 

(5.104) 

My = "        JZMyyA,y 

M2 = =   E,lzzKz 

*co  = EW/a 
Ts = = GJT 

In Eqs. (5.104), E is Young's modulus, G is the shear modulus, A is the area of the cross 

section, Iw is the second area moment about the y-axis, Izz is the second area moment 

about the z-axis, 1^ is the second sectorial moment (or the warping coefficient), and J 

is the effective polar moment for Saint Venant's torque Ts . These geometric properties 

of the cross section are given by the formulas 
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-I A =     hds 
'c 

=2    ,    ,u3 IYY -     [h? + (h712)cosa]ds lyy 

[hy2 + (h3/12)sin2cc]ds 

[hcö2 + (h3/12)S2]ds 
Jc 

J=  t h3ds 

(5.105) 

In some thin wall beam theories the terms with h3 in Eqs. (5.105) are neglected except 

in the equation for J. 

Continuum Solutions 

This section describes the development of continuum solutions for the in-plane 

static and vibrational response for a thin curved beam with homogeneous, isotropic, 

thin-walled, construction. For the special case of a symmetric cross section, the 

equations decouple allowing individual solutions for the in-plane and out-of-plane re- 

sponses. An out-of-plane vibration solution is also presented. 
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In-Plane Vibration Solution 

The equations of motion as stated in Eqs. (5.71)-(5.77) are extensively coupled by 

the inertia terms. A continuum solution for the coupled equations would be very diffi- 

cult. For our special case, the differential equations of motion which govern the the 

in-plane response (5.71, 5.73, and 5.75) reduce to 

<5U: -m„Ü + N'/a - Qz/a = 0 (5.106) 

(5W: -m33W + N/a + Q'2/a = 0 (5.107) 

ö(j)y: -m55<£y + M'y/a - Qz = 0 (5.108) 

in which mu = m33 = pA = m, and m^ = p\^ .   Solving Eqn. (5.108) for Qz and substi- 

tuting into Eqs. (5.106) and (5.107) yields 

-ml) + N'/a =  -plyy0y/a + M'y/a2 (5.109) 

-mW + N/a = plyyiyla2 - M"y/a2 (5.110) 

Using the expressions for </>y in Eqn. (5.17), My and N in Eqs. (5.104), e in Eqn. (5.45), 

Ky in Eqn. (5.47) and substituting into Eqs. (5.109) and (5.110) yields 

-Ey-(U" _ W/) +  _^L(W'» + u») = mü +  -^-(W' + Ü)     (5.111) 
a a a 

J^-(U' _ w) |5L(W"" + U'") = mW -  -^-(W" + Uv)   (5.112) 
a a a 
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A separable solution is assumed of the form 

JU(0,t)] 

lw(0,t)J 

:AI 
e' e (5.113) 

in which i = V"1"' ^ is tne fi"equency in radians per second, and rj is an unknown pa- 

rameter. To determine rj, first substitute Eqn. (5.113) into Eqs. (5.111) and (5.112) to 

get 

c, c2 

c2 c4 

lAl 
[BJ 

(5.114) 

where 

Ci = n\ 
2r EA EL 

+ ■ ] + r [m + 
m55 

a 

ill 
FT 2   ^'zz EA 

+ X1 
m 55 

c 
FT 4  -^'zz + EA k\m 2  m55  , 

»/  —r-J 

(5.115) 

Second, a nontrivial solution for A and B in Eqs. (5.114) requires that the determinant 

of the coefficient matrix vanishes, and this leads to a cubic equation (characteristic 

equation) in r}2- The six roots of»/ are denoted rji,j = 1,2,... 6, and may occur as complex 

conjugate pairs. For each root i^ , Eqs. (5.114) also yield the eigenvector components 

Pj = (B/A)j , n = ij (5.116) 

Thus, the general solution to Eqs. (5.111) and (5.112) is 
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\Vm\   =   eUt YcTle^ (5.117) 
lw(ö,t)J Z_J      bjj 

where Cj are the unknown constants. The constants Cj are determined from the bound- 

ary conditions. For example, clamped end conditions, see Eqs. (5.78), require U, W, and 

4>y to vanish at 6 = 0, and 8 = 62. This leads to the six homogeneous equations 

U(0,) 0 

U(02) 0 

W(0,) - = £q P, e^ = 0 

W(02) = = 0 

W'(0,) = iqp^1 = 0 

W'(02) = 
6 

Eqp^e"* = 0 

(5.118) 

j=i 

These are written in matrix form as 

AC = 0 (5.119) 

in which A is a 6 x 6 matrix and CT = [Cj] . Nontrivial solutions to Eqn. (5.119) require 

the determinant of A to vanish. Since the six roots of?/ are functions of X , and t] appears 

as an exponent in the coefficients of matrix A, this is a nonlinear eigenproblem for the 
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eigenfrequency X . The solution proceeds by a determinant plotting method, in which X 

is assumed, the six roots of?/, are computed along with the six values of P, , and the de- 

terminant of A in Eqn. (5.119) is calculated. Increasing values of X are selected until a 

sign change in the determinant occurs, and Newton's method is used to converge on the 

frequency. For a given frequency, the eigenvectors C of Eqn. (5.119) are obtained to 

give the mode shape. Although the determinant plotting technique is a not very good 

numerical method for large matrices, it works well enough for the matrices encountered 

in this problem. 

The boundary conditions for the free-free case are 

N(0,) = N(02) = 0 
My(0!) = My(02) = 0 (5.120) 

Qz(*i) = Qz(02) = o 

The equations for pinned boundary conditions are 

U(öj) = U(02) = 0 
W(0,) = W(02) = 0 (5.121) 

My(0!) = My(62) = 0 

The equations for pinned boundary conditions with torsional springs are 

U(0i) = U(02) = 0 
W(0,) = W(02) = 0 

My(0,) = »rW'tf,) P,1//; 

My(02) = UjW'iO,) 

Where aT is the torsional spring constant. 
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In-Plane Static Solution 

For a thin curved beam with isotropic, homogeneous, thin-walled construction and 

a monosymmetric cross section, the equilibrium equations describing the in-plane static 

response can be obtained from the equations of motion (5.106-5.108) by discarding the 

inertia terms. The resulting equations are 

<5U: N'/a - Qz/a = 0 (5.123) 

<SW: N/a + Q'z/a = 0 (5.124) 

<5</>y: M'y/a - Qz = 0 (5.125) 

Eliminating Qz in Eqs. (5.123) and (5.124) using (5.125) yields 

N'/a - M'y/a2 = 0 (5.126) 

N/a + M"y/a2 = 0 (5.127) 

Substituting the relations for N and My from Hooke's law in Eqn. (5.104), Eqs. (5.126) 

and (5.127) become 

FT 
-M-(TJ" - W) +  —£-{W" + U") = 0 (5.128) 

a a 

FT 
-M-(U' - W) ^(W"" + U'") = 0 (5.129) 

a a 

where A and Iw are defined in Eqn. (5.105).    Dividing Eqs. (5.128) and (5.129) by 

EA/a2 results in 
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U" - W + r2(W" + U") = 0 (5.130) 

U' - W - r2(W"" + U"') = 0 (5.131) 

in which r2 = Iyy/(Aa2) is the square of the slenderness ratio. 

Assume the in-plane displacements can be represented by 

[wi ur 
(5.132) 

Substituting Eqs. (5.132) into the differential Eqs. (5.130) and (5.131) leads to the fol- 

lowing characteristic equation for rj 

?n\
2 + IT = o (5.133) 

The roots of this characteristic equation are 0, 0 , +i, +i, -i, -i, in which i = j-l . Thus, 

there are three repeated roots for r\, and the procedure presented by Kaplan (Ref. 32) 

was used to construct six linearly independent solutions to Eqs. (5.130) and (5.131). The 

solution is 

Wj loj llj l-sinöj leosöj 
r      e cos e      i        r     e sin e     ~) 

+ c5\ } + cJ \ 
I - e sin 6 + r cos 6) 19 cos 6 - r sin 6) 

where r is defined as [1 - f2]/[l + r2]. 

The solution in Eqn. (5.137) satisfies the differential equilibrium equations exactly 

and can be used to model the static response of a thin curved beam subjected to com- 

bined in-plane loading. A curved beam subjected to a radial load fr, a tangential load f„, 
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and an in-plane couple whose moment is n\ at a location defined by 8 = 8' is shown in 

Fig. 41. The curved beam is supported at 8 = {8U82) and 8^<8' < 82. 

This loading requires that two solutions be implemented over the beam, one for the 

left portion (0j < 8 < 8') of the curved beam and one for the right portion (8' <8< 82) . 

Thus, the solution for the left-hand-side is 

i(0) 8X<8<8 (5.138) 

J=I 

;J - lm 
and for the right-hand-side 

6 

Ri   =    ) Ci+6Ö}(8) 8*<8<82 (5.139) 
RJ j=i 

where öfß) are the six linearly independent solutions from Eqn. (5.137). 

The problem requires twelve equations to solve for the twelve unknown constants 

Cj. Six of the equations can be obtained from transition conditions at 8'. Continuity of 

the beam at 8' requires that the displacements and rotation at 8' are continuous requir- 

ing 

U(0l) = U(8*+) 

W(0l) = W(0+) (5.140) 

W'(0l) = W'(0+) 
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Figure 41. Loading for in-plane static solution: A curved beam is subjected to radial, tangential, and 
bending loads at 0 = 0*. The curved beam is supported at the ends 
(6 = 0! and 0 = 62). 
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in which a quantity with a " + " superscript is evaluated from the right interval and a "-" 

superscript implies the quantity is evaluated from the left interval. 

Equilibrium of a infinitesimal element at 0 = 0* provides three jump conditions in 

the actions given by 

N(0+) - N(0_) = -u 
v4(0+) - M(0l) = -my 

0,1 - Qz(öl) = fr 

(5.141) 

The remaining six equations can be obtained from the boundary conditions at 

0 = 0i and 0 = 02. The boundary conditions for clamped, pinned, free, and pinned with 

a torsional spring are provided in Eqs. (5.118) and (5.120-5.122), respectively. Thus, 

using three boundary conditions at 0 = 0!, three continuity conditions of Eqs. (5.140), 

the three jump conditions of Eqs. (5.141), and three boundary conditions at 0 = 02 , a 

set of linear equations can be written in the form 

AC   =   F (5.142) 

where A is a 12 x 12 matrix of coefficients, C is a 12 x 1 vector containing the unknown 

constants, and F is a 12 x 1 load vector. The solution vector C was determined by 

Gaussian elimination. 

Having found the solution vector, the displacements of the beam are given by Eqs. 

(5.137-5.139). Differentiating and substituting into Eqs. (5.45) and (5.47) gives the ex- 

tensional strain and the change in curvature, respectively. Substituting the strains into 

Eqn. (5.104) provides the beam actions N and My. 
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Out-of-Plane Vibration Solution 

The differential equations of motion which govern the out-of-plane vibrational re- 

sponse of a thin curved beam with thin, isotropic, homogeneous, walls can be obtained 

from Eqs. (5.72), (5.74), and (5.76) and (5.77). For the special case of a symmetric cross 

section using principal centroidal axes, these equations reduce to 

<SV: -m22V - m24<£x + Q'y/a = 0 (5.143) 

6<t>x: -m24V - m440x - Mz/a + T'/a = 0 (5.144) 

5<t>z: -m«^ + M'z/a + Qy + T/a = 0 (5.145) 

or: -m77T + M'Ja - Ts + T = 0 (5.146) 

Having assumed the cross-sectional coordinates are the principal centroidal axes, 

m24 = muZp = mzp, m44 = p[(Iyy + IJ + Azg] , rck6 = plzz, and m77 = pIWM where A, 

lyy, Izz» Iww are defined in Eqs. (5.105). If the cross section is doubly symmetric, the 

centroid coincides with the shear center and zp is zero. Solving Eqs. (5.145) and (5.146) 

for the shear force Qy and the torque T, respectively, and substituting into Eqs. (5.143) 

and (5.144) yields 

T's   +    M^  _    M^  =   P}^_.., _   P^^    + my + _   v  (5iM7) 
-r 3 2        - 2      <• a     v z    ' ""-pv 

a a a a 

T' M" M - pi s aim lvlz rxcoa)   ..,     .    ^      ,        .    —-     *r /r I/IQ\ -5 -2 -5-  =   1 T   + m440x + mZpV (5.148) 
a 
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Using Hooke's law Eqn. (5.104) and substituting for <j)z, T, and KZ using Eqs. (5.18), 

(5.19), and (5.46), respectively, Eqs. (5.147) and (5.148) become 

mV + mzD<j(> pvx 
PIZZ V"  +   -^L(^x" -"¥-)+   -^-(0X" 2      ' 3      v^x a    '    ' 3 a a a 
FI \r"" El ^xzz  /x ,,    ,     _V s _J£2L(X <i>, 

+ —rWx  + -r~) ?~(<Px    - 
V"" 

V" 

) = o 

) 
(5.149) 

mZpV + m440x 
Pic 

«>x" 

+ 

a 
EL 

V" s        GJ (, „ 

a 

V" 
•(0x+  "T") + 

El, 
W>x"" 

VI) 
a   > 

V"" 
(5.150) 

) = 0 

A separable solution is assumed of the form 

,V(0ft)] 

LB' 
e' e (5.151) 

in which i = -J—l , A is the natural frequency in radians per second, and i\ is an unknown 

parameter. To determine t], first substitute Eqs. (5.151) into Eqs. (5.149) and (5.150) to 

get 

c, c2 

c2 c4 

lAl 
'B' LoJ 

(5.152) 

where 

FI 4r  
L"izz      . 

n [—T" + 
a 

El, -, 2  GJ      .     i2r      —    ,      2/ P^zz      ,      P^coco  N-, ]-J/  -T-   + A [ - m + I? ( —5-   +   —7-)] 

FT 
4        coco GJ     .     EIZZ + vl^r + 2r       rrr„ ] + r[-mz. Pi coco     2 

P 
^]    (5.153) 
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-^ 4  EI«xo 2  GJ      ,      EIzz ,2r     „        ,      P1«*»     2-1 
C4 = »/ —4 ^ T +  ~T~ + X L -ni44 +       — n J 

a a a a 

A nontrivial solution for A and B in Eqs. (5.152) requires that the determinant of the 

coefficient matrix vanishes, and this leads to a quartic equation (characteristic equation) 

in n2. The eight roots of rj are denoted j/, , j = 1,2,... 8, and may occur in complex con- 

jugate pairs.  For each root r\v Eqs (5.152) also yield the eigenvector components 

Pj = (B/A)j ,v=m (5-154) 

Thus, the general solution to Eqs. (5.149) and (5.150) is 

■win = eiJ,v_ n 
^x(0,t)J        e   LJ ' LPj 

ut   > q \    \ e^ (5.155) 

where Cjt j = 1,2,... 8, are unknown constants. The constants C, are determined from the 

boundary conditions. For example, clamped end conditions, see Eqs. (5.78), require 

V, <j>„ V, and 4>'x to vanish at 6 = 61 and 6 = 62. This leads to the eight homogeneous 

equations 
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v(0,) = XCJ ^ = ° 
j=l 

8 

V(d2) = £Ci e^ = 0 
j=l 

8 

*z(*l)  =   SCJ   Pi  ^  «  ° 
j=l 

8 

0x(02) = EC
J 

pie^2 = ° 
j=i 

8 

v(öi) = EcJ "J 
e^ = ° 

8 

v(ö2) = £q m ^ = o 
i=i 
8 

4>'x(0>) = Zci Vi e"iÖ1 = ° 
i=i 

*'x(öa) - Ecj pj >?i ^ = ° 

(5.156) 

These are written in matrix form as 

AC = 0 (5.157) 

in which A is an 8x8 matrix and CT = [Cj] . Nontrivial solutions to Eqs. (5.152) require 

the determinant of A to vanish. Since the roots of?/ are functions of X , and v\ appears 

as an exponent in the coefficients of matrix A, this is a nonlinear eigenproblem for the 

eigenfrequency X. The solution proceeds by a determinant plotting method, in which X 

is assumed, the eight roots J/J are computed along with the eight values of Pj, and the 

determinant of A in Eqn. (5.152) is calculated. Increasing values of A are selected until 

a sign change in the determinant occurs, and Newton's method is used to converge on 
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the frequency. For a given frequency, the eigenvectors C of Eqn.  (5.155) are obtained 

to give the mode shape. 

The boundary conditions for the free-free case are 

Qy(öi) = Qy(02) = 0 

1(0,) = T(Ö2) = 0 (5.158) 

Mz(0,) = Mz(02) = 0 

The equations for pinned boundary conditions are 

V(0,) = V(02) = 0 

0x(öi) = Uh) = o 
Mz(0,) = Mz(02) = 0 

M„(ö,) = MJ02) = 0 

(5.159) 

Finite Element Computer Program 

The finite element computer program used extensively in this study was developed 

by Noor et al., (Ref. 7) specifically for the free-vibrational analysis of curved thin-walled 

beams with open sections. The analytical formulation is based on a Vlasov-type, thin- 

walled, curved beam theory similar to the theory discussed in this chapter. This section 

briefly discusses the analytical development of the finite element relying heavily on the 

equations presented previously to point out some interesting differences. Some practical 

aspects of using the program will also be related. 
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Element Formulation 

The finite element developed by Noor et al, includes the effects of transverse shear 

deformation which were not included by Vlasov nor in the development presented in this 

chapter. A modified form of the Hellinger-Reissner mixed variational principle was used 

to develop the element. Including transverse shear deformation adds an additional two 

degrees of freedom, and reduces the continuity requirements from C to C° for the 

transverse displacements V and W. 

The Hooke's law relation used in the element development is 

~             - r -i ■- 

Nx EA        0 0 -ES„ 0 0 0 e 

Mz EIZZ —FI klcoz 0 0 0 *z 

My El Llyy —FI 0 0 0 Ky 

M. = El 0 0 0 Y 

Qy GAy 0 0 0 

Qz GAZ 0 0 
Vez 

Ts SYMM GJ T 

. _ L 

(5.160) 

in which the additional curved beam strain measures relative to those presented earlier 

are 

Y = 4>"x/a2 

vly = V'/a - (j)z 

vl = (W + U)/a + 4>, 

(5.161) 

The notation used by Noor has been transliterated into the notation used in this study. 

The finite element code was developed for isotropic homogeneous materials, thus, the 
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"EH" stiffness terms characteristic of composite materials do not appear. A consequence 

of this is that the finite element model cannot model the bend-twist coupling of lami- 

nated specimens. 

The coordinate system used in calculating the section properties places the origin 

and the pole at the centroid; thus, only the first moments of area Sy and Sz are zero. A 

diagonal stiffness matrix offers few advantages in a numerical solution. The section area 

properties Ay and Az provide the opportunity to model the shear stiffness employing 

shear correction factors to the shear stiffness GA. 

The torsional strain component T in Eqn. (5.160) is consistent with the torsional 

strain used in the Hooke's law relation in Eqn. (5.104). However, the warping strain 

component V in the first of Eqs. (5.161) is not the same as the strain measure r'/a used 

for the bimoment in the Hooke's law of Eqs. (5.104). 

To achieve C° continuity for the rotation </>„ a new kinematic variable 0° is intro- 

duced that is defined to be the derivative of rotation <£x. This kinematic relation is en- 

forced via a Lagrange multiplier Ä. Thus, both 0° and <px are represented by C° 

interpolation functions in the element. 

The functional used in the element development is 

n = nHR +   Wx - 0°)ad0 - -£- I (A)2ad0 <5-162) 
"p 

''C 

where nHR is the Hellinger-Reissner functional, X is the Lagrange multiplier associated 

with the constraint condition, and ep is the penalty parameter in the regularization term. 

The finite element equations for each element can be cast in the following compact 

form 
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-F    0     S H 
r     "\ 

0  0   0 H 
c 

0    f  Q- 
P W =   Q2 0  0   0 

' 
Sl     Q    0 X 0  0   M X 

(5.163) 

where {H}, {1}, and {X} are the internal force parameters, Lagrange multiplier param- 

eters, and nodal displacements, respectively; [F] is the flexibility matrix, [S] is the strain- 

displacement matrix. Finally, [P] and [Q] are matrices associated with the constraint 

condition and the regularization term in the augmented functional. 

The regularization term in Eqn. (5.162) results in replacing one of the zero diagonal 

submatrices in the discrete equations (Eqn. 5.163) of the Lagrange multiplier approach 

with a nonzero diagonal matrix, [P]/£p. Mathematically, the submatrix cannot be zero 

but physically it should be. The penalty parameter is used to keep the regularization 

term small. Thus, an important consideration in this formulation is the proper selection 

of the penalty parameter. The accuracy of the solution increases with increasing values 

of £p . However, for very large values, the equations become ill-conditioned, thereby in- 

creasing the round-off errors. 

Application to Test Specimens 

Noor's finite element program was developed for vibrational analysis, but it can be 

used to predict the static response as well, thus, it was used to model both the static and 

the vibrational tests. In the static mode, loads are applied to the model at the nodes and 

the program predicts the deformations and strains caused by the applied loads. When 

the program is run in the dynamic mode, it calculates the ten lowest natural frequencies 

(eigenvalues) and their associated mode shapes (eigenvectors). In addition, the program 
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calculates the strain energy distribution in each mode. The strain energies due to axial 

strain, shear strain, in-plane bending, out-of-plane bending, torsion, and warping are 

calculated for each mode. 

The strain energy distributions for the modes of the I-section and channel section 

specimens are presented in Fig. 42. The extensional, shear, and warping energies are 

uniformly small in all modes. The strain energies in the I-specimen modes are either 

pure in-plane bending or a combination of torsional and out-of-plane bending energies. 

Thus, the modes of the I-specimen were easily identified as in-plane or out-of-plane 

modes on the basis of strain energy distribution. 

The strain energy distributions associated with the modes of the channel specimen 

always exhibit some degree of coupling between the in-plane and out-of-plane responses. 

The channel specimen's even numbered modes are dominated by in-plane bending en- 

ergy and the remaining modes are dominated by torsional and out-of-plane bending en- 

ergies. In general, if the energy in a mode consists of more than 85 % in-plane bending, 

than that mode is considered an in-plane mode. If out-of-plane bending and torsional 

energies comprise more than 85 % of the total energy, than that mode is considered an 

out-of-plane mode. All of the modes of the channel specimen fit one definition or the 

other, thus, the modes are easily classified based on their energy distribution. 

With any finite element code, it is necessary to determine the number of elements 

required for convergence. Convergence studies for static and dynamic cases were con- 

ducted for both test specimens. The results of the dynamic convergence study are pre- 

sented in Fig. 43. The natural frequencies converged for a sixteen element model. The 

sixteen element model was selected for both the static and dynamic analysis of both 

specimens from this convergence study. The elements have three nodes each providing 

thirty-three nodes and 231 degrees of freedom (7 degrees of freedom per node). 
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Figure 42. Strain energy distributions in vibrational modes for both specimens: The strain energy 
distributions in the vibrational modes of both specimens are presented. Modes are ar- 
ranged in order of increasing frequency. 
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Fizure 43. Number of elements convergence study: The figure shows the convergence of the natural 
frequencies of both specimens for the 8, 16, and 32 element models. Modes are in order 
of increasing frequency. Natural frequencies are in hertz. 
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An important consideration in using the finite element program is the proper se- 

lection of the penalty parameter. The penalty parameter was chosen based on a conver- 

gence study conducted for static and dynamic cases for both specimens. The penalty 

parameter convergence studies were run for the sixteen element models. The conver- 

gence studies for the dynamic case for both specimens are presented in Fig. 44. The 

plots show that above a certain value of the penalty parameter the natural frequencies 

are constant. The smallest value of the penalty parameter for which all the predictions 

changed by less than 1 % was the value used in the subsequent analyses. 

The plots show the affect of the penalty parameter on the natural frequencies of the 

second, third, and fourth out-of-plane mode and the first in-plane mode for both speci- 

mens. The I-specimen plot is smooth and continuous while the plot for the channel 

specimen is discontinuous. This is because the penalty parameter had no affect on the 

energy distributions in the I-specimen modes. Thus, the character of the mode was 

constant and only the natural frequency varied. Further, the penalty parameter only af- 

fected the out-of-plane modes of the I-specimen. Neither of these statements are true for 

the channel specimen. 

The energy distributions in the channel modes varied extensively with the penalty 

parameter. A mode which was initially dominated by in-plane energy might eventually 

evolve into an out-of-plane mode, and an out-of-plane mode might gain in-plane energy 

until it had to be considered an in-plane mode. Thus, the penalty parameter affected 

both in-plane and out-of-plane modes. For penalty parameters in excess of 1 x 109, both 

the natural frequencies and energy distributions of both specimens had converged. The 

static and dynamic response of both specimens converged at the same value of the pen- 

alty parameter, thus, 1 x 109 was used as the value for the penalty parameter in subse- 

quent analyses. 
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Figure 44. Penalty parameter convergence study: The plots show the effects of the penalty parameter 
on the natural frequencies of the second, third, and fourth out-of-plane modes and the first 
in-plane mode for both specimens. The log of the penalty parameter is plotted on the 
horizontal axis. 
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The section properties used in Hooke's law in Eqn. (5.160) were also used in the 

mass matrix. These section properties were evaluated using a computer program pre- 

sented by Coyette (Ref. 33). This program calculates the section properties for a thin- 

walled open cross section assuming the branches of the cross section are straight and are 

made of an Isotropie homogeneous material. This program was subsequently modified 

to evaluate the modulus-weighted section properties in Eqs. (5.85-5.99) assuming the 

layup in the branches is symmetric. The modulus-weighted section properties were used 

in the static analysis. Since the finite element program uses the input section properties 

in both the stiffness and the mass matrices, the modulus-weighted section properties 

could not be used in the vibrational analysis. A listing of the section properties of both 

specimens is presented in Appendix C. 
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Chapter 6 

Correlation of Numerical and Experimental Results 

The numerical results from the finite element solution and the continuum solutions 

are presented with the corresponding experimental data for the I-specimen and channel 

specimen. In the first section, natural frequencies and mode shapes from the analyses 

are compared with the experimental data from the free-free and the clamped-clamped 

frame tests. In the second section, the predicted flexibility influence coefficients are 

compared with coefficients calculated from the static test data. The comparisons of pri- 

mary interest involve the predictions from the finite element solution and the exper- 

imental data. 

Correlation of Dynamic Data 

The finite element program was used to predict the three-dimensional vibrational 

response of both specimens for clamped and pinned boundary conditions. The in-plane 
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continuum vibrational solution was used to model the free-free frame tests of the I- 

specimen. The finite element program could not model the free-free frame tests because 

of the presence of the rigid body modes. The continuum solution also provided the 

versatility to model the end conditions as torsional springs providing valuable insight 

into the physical problem. The correlation of the free-free vibrational data is presented 

first followed by the correlation of the clamped-clamped vibrational data. 

Free-Free Data 

The numerical and experimental, results for the in-plane, free-free natural frequen- 

cies of the I-specimen are presented in Table 9. The maximum error occurs in the first 

two modes where the errors are -3.5 and -8.2 % respectively. The discrepancies of the 

analysis with respect to the experiment in the first two modes are attributed to the stiff- 

ening influence of the elastic bands used to suspend the specimen. The elastic bands act 

like compliant springs and in the lower modes the energy in the elastic bands represents 

a sizable portion of the total energy in the mode. The higher modes have larger fre- 

quencies and consequently higher energies, thus, the amount of energy in the elastic 

bands relative to the specimen is less significant. The analytical predictions and exper- 

imental results for the four, five, and six node modes correlate quite well. 
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Table 9.    Correlation of the free-free in-plane natural frequencies of the I-specimen 

No. of Experiment Analysis a Errorb 

Nodes Hz Hz % 

-3.5 2 25.8 24.9 
3 78.3 71.9 -8.2 
4 151.0 150.4 -0.4 
5 259.0 257.1 -0.7 
6 388.0 390.9 0.7 

a Continuum solution 
b (Analysis-Exp)/Exp x 100 

The predicted four and five noded mode shapes of the I-specimen are shown in Fig. 

45. The four and five node modes are presented because they provide an interesting test 

of the analytical solution. The experimentally located nodes are indicated by dots in the 

figure, the undeformed frame is represented by the solid line, and the analytical mode 

shape by the dashed line. The mode shapes were normalized to make the largest dis- 

placement 10 % of the radius. Thus, the mode shapes are exaggerated to make them 

more visible. The analytical mode shapes correlate quite well with the experimental data. 

The mode shapes for the two and three node modes are presented in Appendix A. 

Clamped-Clamped Tests 

The finite element program was used to model the clamped-clamped vibrational 

tests for both specimens. The continuum solution confirmed the predictions of the finite 

element solution for the in-plane response of the I-specimen. Initially, the analyses were 

run with clamped-clamped end conditions resulting in predictions which were consist- 

ently too high. Modeling the end conditions as hinges with respect to in-plane and out- 

of-plane rotations resulted in predictions which were generally too low. Thus, predictions 

using clamped-end and pinned-end conditions bracketed the experimental results indi- 
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Figure 45. Free-free in-plane mode shapes for the I-specimen: The predicted mode shapes for the four 
and five node modes for the I-specimen are presented with the experimentally located 
nodes which are indicated by dots. The undeformed frames are represented by the solid 
lines and the analytically predicted mode shape by the dashed lines. 
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eating that the experimental boundary conditions acted like torsional springs. In the 

lower modes, the experimental results correlated well with the clamped-clamped pred- 

ictions. In the higher modes, the experimental values correlated well with the pinned- 

pinned predictions. This indicates that as the frequency and energy of the modes 

increased, the clamping effectiveness of the boundary conditions decreased. In general, 

the numerical results from the finite element computer program correlated well with the 

experimental results with the exception of the in-plane modes of the channel specimen. 

The comparison of the in-plane results will be presented first followed by the out-of- 

plane results. 

The predictions for the in-plane natural frequencies for the I-specimen from the fi- 

nite element program are presented in Fig. 46. The dashed lines correspond to the ana- 

lytical predictions obtained using clamped-end and pinned-end conditions. The first two 

experimental values correlate very well with the clamped-clamped predictions, but the 

experimental response begins to shift towards the pinned-pinned predictions in subse- 

quent modes. The last in-plane mode (8 nodes) correlates well with the corresponding 

pinned-pinned prediction. In the higher modes, the relative difference between the fre- 

quencies for the pinned-end and clamped-end conditions decreases. For the eight noded 

in-plane mode, the difference between the frequencies for the clamped-end and pinned- 

end conditions is just slightly more than 6 %. 

The experimental results and analytical predictions from the finite element program 

and continuum solutions are presented in Table 10. The predictions from the continuum 

solution essentially duplicate the predictions from the finite element code. The classical 

solutions from Den Hartog (Ref. 11) for the first in-plane natural frequencies for 

clamped and pinned boundary conditions are 59.4 and 29.9 hertz, respectively. These 

values correlate very well with the numerical predictions. The correlation between the 
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Figure 46. Clamped-clamped in-plane natural frequencies for the I-specimen: The analytical pred- 
ictions for the clamped-end and pinned-end conditions are represented by the dashed lines 
and the experimental values are the solid line. The modes are ordered by the number of 
nodes circumferentially and the frequencies are in hertz. 

Correlation of Numerical and Experimental Results 139 



analytical predictions for clamped-end conditions and the experimental values is good 

initially, but degrades in the higher modes. 

Table 10.    Correlation of clamped-clamped in-plane natural frequencies for the I-specimen 

Experiment 
Analyses 

Clamped Pinned 
No. of FEMa Cntnmb FEMa Cntnmb 

Nodes Hz Hz Hz Hz Hz 
3 57.7 59.0 58.6 30.6 30.3 
4 127.2 129.3 128.7 93.2 92.5 
5 233.0 239.9 238.9 187.8 186.6 
6 350.6 365.8 364.6 305.6 303.7 
7 490.0 529.5 527.7 454.0 451.2 
8 617.0 699.2 696.8 622.6 618.3 

Finite element model from Ref. 7 
Continuum solution 

The continuum analysis was easily adapted to model the end conditions as torsional 

springs. Modeling the end conditions as torsional springs provided the opportunity to 

match the experimental frequency for each mode. The results of this effort are presented 

in Table 11. The last column is the effective torsional spring stiffness necessary to obtain 

the analytical natural frequency which essentially matches the experimental value. The 

results show that the effective stiffness of the end conditions decreases with increasing 

frequency producing the transition from clamped to pinned boundary conditions. 
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Table 11.    Effects of boundary spring stiffness on the in-plane vibrational response of the I-specimen 

Boundary 
Spring 

Experiment Continuum Error" Stiffness 
No. of a, 
Nodes Hz Hz % in-lb/rad 

3 57.5 57.48 -.035 9x 105 

4 127.2 127.32 0.094 9x 10s 

5 233.0 233.60 0.258 6x 105 

6 350.6 348.58 -.576 3x 10s 

7 490.0 485.38 -.951 1 x 105 

8 617.0 618.20 0.200 1 x 103 

3 (Analysis-Exp)/Exp x 100 

The curve in Fig. 47 shows the effect of the torsional spring constant on the pre- 

diction of the first in-plane natural frequency. The two horizontal lines represent the 

predictions for clamped-end and pinned-end conditions from the finite element program. 

The logarithm to the base ten of the spring stiffness is plotted on the horizontal axis. 

For very compliant and very stiff springs, the predicted natural frequency approaches the 

predictions for pinned-end and clamped-end conditions, respectively. The plus sign in the 

figure indicates the experimental value. The in-plane natural frequencies are sensitive to 

small changes in the torsional spring stiffness. 

The experimental and numerical results for the in-plane natural frequencies for the 

channel specimen are presented in Table 12 and in Fig. 48. The correlation between the 

finite element predictions and the experimental results is poor. The predictions for the 

natural frequencies using both clamped-end and pinned-end conditions are much lower 

than the experimental results. A sensitivity analysis showed that the in-plane natural 

frequencies are very sensitive to the value of the first sectorial moment Lv. This term 
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Figure 47. Effects of torsional spring end conditions: The solid line indicates the effect of the torsional 
spring stiffness on the frequency of the first in-plane mode of the I-specimen. The hori- 
zontal lines are the predictions obtained using clamped and pinned boundary conditions. 
The log of the torsional spring stiffness is plotted on the horizontal axis. 
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Figure 48. Clamped-clamped, in-plane natural frequencies for the channel specimen: The analytical 
predictions for the clamped-end and pinned-end conditions are represented by the dashed 
lines and the experimental values are the solid line. The modes are ordered by the number 
of nodes circumferentially and the frequencies are in hertz. 
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couples warping and in-plane bending.   Other section properties characteristic of an 

asymmetric cross section did not have a significant effect on the in-plane response. 

Table 12.    Correlation of clamped-clamped, in-plane natural frequencies for the channel specimen 

Experiment 

FEMa 

Clamped Pinned 

No. of 
Nodes Hz Hz Hz 

3 44.6 18.8 10.0 
4 99.1 41.5 35.6 
5 176.0 76.7 61.9 
6 276.7 118.3 107.2 
7 413.0 171.3 151.8 

a Finite element model from Ref. 7 

The mode shapes for the five and six noded in-plane modes for both specimens are 

presented schematically in Figs. 49 and 50. The five and six node modes are used for the 

comparison because they provide an interesting test of the analysis. The mode shapes 

are shown in top and front views. In the top view, the reference axis of the undeformed 

frame is a straight line. The I-specimen mode shapes show pure radial motion while the 

mode shapes of the channel specimen exhibit both radial and lateral motions. The mode 

shapes for the I-specimen correlate very well with the experimental results. The mode 

shapes for the channel specimen agree fairly well despite the poor predictions for the 

natural frequencies. 

The predictions from the finite element computer program for the out-of-plane na- 

tural frequencies for the I-specimen are presented with the corresponding experimental 

results in Fig. 51. The softening response exhibited by the experimental data seems to 

be attributable to the boundary conditions. The experimental data follows the clamped- 
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Figure 49. Five noded, in-plane, clamped-clamped mode shape for both specimens: The five noded 
in-plane mode shapes for both sections are shown schematically. The experimentally lo- 
cated nodes are indicated by dots, the undeformed frames are represented by the solid lines 
and the analytically predicted mode shape by the dashed lines. 
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Figure 50. Six noded, in-plane, clamped-clamped mode shape for both specimens: The six noded in- 
plane mode shapes for both specimens are shown schematically. The experimentally lo- 
cated nodes are indicated by dots, the undeformed frames are represented by the solid lines 
and the analytically predicted mode shape by the dashed lines. 
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Figure 51. Clamped-clamped out-of-plane natural frequencies for the I-specimen: The analytical 
predictions for the clamped-end and pinned-end conditions are represented by the dashed 
lines and the experimental values are the solid line. The modes are ordered by the number 
of nodes circumferentially and the frequencies are in hertz. 
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end predictions through the first five modes, then shifts from clamped-end to pinned-end 

conditions between the fifth and sixth modes. This transition is very abrupt compared 

to the shift observed in the in-plane response. After the shift, the experimental data fol- 

lows the pinned-end predictions closely. 

A plot of the analytical predictions and the experimental results for the out-of-plane 

natural frequencies of the channel specimen is presented in Fig. 52. Due to the asym- 

metric cross section of the channel specimen, predictions for only the first six out-of- 

plane natural frequencies were obtained. The transition from clamped-end to pinned-end 

conditions was also observed in the out-of-plane response of the channel specimen. The 

finite element predictions agree well with the experimental data through the first three 

modes. The transition from effective clamped-end to effective pinned-end conditions 

begins in the fourth and fifth modes and is completed between the fifth and sixth modes. 

It appears that the pinned-end predictions would correlate with the higher experimental 

natural frequencies if those predictions were available. 

The numerical and experimental results for the out-of-plane natural frequencies for 

both specimens are summarized in Table 13. Though the plots show good correlation 

in the first few modes, the discrepancy of the predicted frequency with respect to the 

experimental value for the fundamental mode is actually 8.5 % and 6.7 % for the I- 

specimen and channel specimen, respectively. The classical solution from Brown (Ref. 

12) predicts a frequency of 7.5 Hz for the fundamental frequency of the I-specimen 

confirming the prediction from the finite element code. The prediction of 15.4 Hz ob- 

tained from the out-of-plane continuum solution is almost 100 % too high. The fact that 

none of the analyses can predict the fundamental frequency is disturbing. Generally, 

experimental frequencies are lower than those from the analysis. In this case, the exper- 
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Figure 52. Clamped-clamped out-of-plane natural frequencies for the channel specimen: The analyt- 
ical predictions for the clamped-end and pinned-end conditions are represented by the 
dashed lines and the experimental values are the solid line. The modes are ordered by the 
number of nodes circumferentially and the frequencies are in hertz. 
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Table 13.    Correlation of clamped-clamped, out-of-plane natural frequencies for both specimens 

Experiment 

FEMa 

Clamped Pinned 

No. of 
Specimen Nodes Hz Hz Hz 

I-specimen 2 8.2 7.5 - 
3 29.8 25.4 6.3 
4 64.3 58.4 24.6 
5 110.4 105.4 57.7 
6 157.8 161.7 104.1 
7 164.7 220.7 158.5 
8 207.4 278.2 214.9 
9 254.7 332.0 269.8 

10 314.7 383.8 322.0 

Channel 2 7.4 6.9 - 

3 25.4 24.2 5.9 
4 55.4 55.8 23.1 
5 91.1 103.7 54.7 
6 148.8 164.4 100.4 
7 155.2 234.8 156.6 
8 187.0 
9 214.0 

 ——  

Finite element model from Ref. 7 
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imental results are higher than the analysis, which is not usually the case when corre- 

lating analysis and experiment. This discrepancy remains unresolved. 

The mode shapes for the five and six node out-of-plane modes for both specimens 

are presented in Figs. 53 and 54, respectively. The mode shapes are shown in both top 

and front views. The mode shapes for the channel specimen modes show radial dis- 

placements as well as out-of-plane displacements. This is typical of the coupled response 

of the channel specimen. The mode shapes for the I-specimen show pure out-of-plane 

motion characteristic of an uncoupled response. Good correlation is observed between 

the predicted mode shapes and the experimentally located nodes for the mode shapes 

of both specimens. The correlation for the lower modes was generally as good or better. 

The mode shapes for the other modes are presented in Appendix A. 

Correlation of Static Data 

To correlate the experimental flexibility coefficients with the analytical values it is 

necessary to choose the experimental results which are most representative of the small 

deflection response of the frames. The in-plane test results are considered more reliable 

than the out-of-plane test results, therefore, the values for flexibility coefficients 

a13, a23, and a33 are taken from the in-plane tests. Specifically, the experimental values 

associated with the forty pound radial load are used in the correlation of the data for 

both specimens. The coefficients from the forty pound radial load were chosen because 

it was the lowest load with the least amount of scatter in the data associated with it. In 

the cases where the values for positive and negative torques are close, the values are 

averaged. When the magnitudes are significantly different, the value associated with the 
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Figure 53. Five noded, out-of-plane, clamped-clamped mode shape for both specimens: The five noded 
out-of-plane mode shapes of both specimens are presented schematically. The exper- 
imentally located nodes are indicated by dots, the undeformed frames are represented by 
the solid lines and the analytically predicted mode shape by the dashed lines. 
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Figure 54. Six noded, out-of-plane, clamped-clamped mode shape for both specimens: The six noded 
out-of-plane mode shapes of both specimens are shown schematically. The experimentally 
located nodes are indicated by dots, the undeformed frames are represented by the solid 
lines and the analytically predicted mode shape by the dashed lines. 
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negative torque is used in the correlation. The values for flexibility coefficients 

a12, a22, and a32 are only obtained from the out-of-plane tests. The values for these coef- 

ficients associated with lateral loads of 3.25 and 1.063 pounds are used for the I- 

specimen and channel specimen, respectively. 

The experimental values for the flexibility coefficients are correlated primarily with 

predictions from the finite element solution. The predicted values were obtained using 

clamped boundary conditions and two types of section properties. The finite element 

program was developed for isotropic, homogeneous, materials. Purely geometric section 

properties are generally used as input to describe the cross section of the specimen. To 

try to account for the composite material system the modulus-weighted section proper- 

ties discussed in Chapter 5 are also used. Thus, predictions obtained using modulus- 

weighted and geometric section properties are presented. The modulus-weighted section 

properties and the geometric section properties for both specimens are presented in Ap- 

pendix C. 

The finite element computer program uses linear elastic structural theory, thus, the 

predicted flexibility matrix is symmetric. The experimental tests measured the total re- 

sponse of the frames which is a combination of linear and nonlinear responses. As a re- 

sult, the experimental flexibility matrices are generally not symmetric. The flexibility 

influence coefficients of primary interest are the diagonal terms; an, a22, and <x33. These 

terms play the largest role in describing the load carrying behavior of the frames. With 

the exception of the oe23 term, the off-diagonal terms play a small role in the static re- 

sponse of the frames. The significance of a23 is a result of the coupling between out-of- 

plane bending and torsion due to the curved geometry. The correlation of the static 

results for the I-specimen will be discussed first followed by the results of the channel 

specimen. 
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I-Specimen Results 

The flexibility coefficient <xu for the I-specimen is a special case in that values for 

<xu were obtained from two independent tests and from two independent analyses. The 

analytical predictions and experimental results for the flexibility coefficient <xu are pre- 

sented in Table 14. The finite element predictions using clamped and pinned boundary 

conditions bracket the experimental value from the in-plane static test, and also the 

crush test. The crush test result for <xn is closer to the prediction obtained for clamped- 

end conditions reflecting the difference in the experimental boundary conditions between 

the tests. The continuum static solution was used to model the end conditions as 

torsional springs. The torsional spring stiffness required to match the in-plane static test 

value for <xn is smaller than the torsional spring stiffnesses required to match the in-plane 

natural frequencies in Table 11. The lower torsional spring stiffness required in the static 

tests with respect to the vibrational test is probably due to the difference in the static 

mode shape and the vibrational mode shape. 

Table 14.    Correlation of flexibility coefficient fti^for the I-specimen 

Source in/lb 
Experiment 

Crush Test 0.640 x 10~3 

Static Test 0.843 x 10"3 

FEM» 
Pinned 0.926 x 10~3 

Clamped 0.578 x 10~3 

Continuum 
Spring" 0.8559 x 10~3 

Finite element solution from Ref. 7 
Continuum solution with torsional spring stiffness 
at = 2x 104 in-lb/rad. 
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The effect of the torsional spring constant on the value of flexibility coefficient an 

is demonstrated in Fig. 55. The logarithm to the base ten of the spring stiffness is plotted 

along the horizontal axis and a„ is plotted on the vertical axis. The two horizontal lines 

represent the predictions from the finite element program for clamped-end and pinned- 

end conditions. For very compliant springs and very stiff springs, the continuum anal- 

ysis matches the predictions of the finite element code for pinned-end and clamped-end 

conditions, respectively. The plus sign in the figure indicates the experimental result, and 

it is closer to the pinned-end prediction than to the clamped-end prediction. Comparing 

the plots in Figs. 47 and 55 shows that the torsional spring stiffness required to achieve 

effectively clamped-end conditions are different for static and dynamic conditions. The 

effective stiffness of the experimental boundary conditions is higher for the dynamic tests 

than for the static tests. 

The flexibility coefficients for the I-specimen from the finite element program using 

both modulus-weighted and geometric section properties are presented with the corre- 

sponding experimental values in Table 15. In general, the correlation between the ex- 

perimental results and the predictions obtained using the modulus-weighted section 

properties is better than with the predictions obtained using the geometric section 

properties. The modulus-weighted values predict a stiffer response than the geometric 

section properties. 

The discrepancy in the flexibility coefficient an is attributed to the flexibility in the 

experimental boundary conditions. The numerical predictions for flexibility coefficient 

a,22 are significantly higher than the experimental result. The modulus-weighted value 

correlates the best, but it is 20 % higher (more compliant) than the experimental value. 

Torsional springs cannot explain this discrepancy since additional flexibility would make 

the predictions more compliant. This result is consistent with the discrepancy in the 
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Figure 55. Influence of torsional spring stiffness on CCU: The plot shows that the value of an is very 
sensitive to small changes in the flexibility of the end conditions. The log of the torsional 
spring stiffness is plotted on the horizontal axis. The horizontal lines are the predictions for 
clamped-end and pinned-end conditions. 
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fundamental out-of-plane natural frequency of the I-specimen. The predicted values for 

flexibility coefficients a33 and cc23 using modulus-weighted section properties correlate 

well with the experimental values.   The predictions obtained using geometric section 

properties do not correlate as well. The correlation with the experimental result for a32 

from the out-of-plane tests is not as good.   The discrepancy is on the order of 20 % 

similar to the discrepancy in a22 . 

Table 15.    Correlation of the flexibility coefficients for the I-specimen 

Flexibility Experiment Analysis3  
Coefficient M-W* Geometric' 

*22 

Z33 

a. -23 

a 
a 
a. 
a 
<*31 

in/lb 0.843 xlO-3 0.5778 x 10"3 0.6709 x 10~3 

in/lb 0.113 0.1406 0.2006 
rad/in-lb 0.131 x 10~2 0.1396 x 10"2 0.1892 x 10~2 

1/lb 0.101 x lO^1 0.1109 x 10-1 0.1503 x 10"1 

1 lb 0.0877 x 10-1 0.1109 x 10"1 0.1503 x 10-' 
in/lb 0.148 x 10~2 0.715 x 10"s 0.834 x 10"' in/lb 0.148 xlO-2 0.715 x 10"s 0.834 x 10"5 

in lb 0.658 xlO"4 0.715 x 10-5 0.834 x 10-5 

1/lb 0.107 xl0~3 0.197 xlO-6 0.497 xlO-6 

1/lb 0.261 xlO-4 0.197x10-« 0.497 x 10"6 

a Finite element solution from Ref. 7 
" Modulus weighted section properties 
c Geometric section properties 

The predicted values for flexibility coefficients aa and a13 are very small and can be 

interpreted as zero. The experimental value for flexibility coefficient a12 does not corre- 

late well. This discrepancy is believed to be due to a geometric nonlinearity which cannot 

be modeled using linear structural theory. The experimental values for ce21, a13, and a31 

are small and were inconsistently measured. The scatter in the data associated with these 

coefficients indicates that the effects of these coefficients are too small to measure reli- 

ably. Thus, the discrepancies in these coefficients is not significant. 
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Channel Specimen Results 

The flexibility coefficients for the channel specimen from the finite element program 

using both modulus-weighted and geometric section properties are presented with the 

corresponding experimental values in Table 16. In general, the correlation between the 

experimental results and the predictions obtained using the modulus-weighted section 

properties is better than with the predictions obtained using the geometric section 

properties. The predicted values for flexibility coefficient a„ are a minimum of five times 

larger than the experimental result. This discrepancy is too large to be explained by 

experimental anomalies. The discrepancy is consistent with the correlation observed in 

the in-plane natural frequencies of the channel specimen. A sensitivity analysis revealed 

that au is very sensitive to the first sectorial moment IMy. Other section properties 

characteristic of an asymmetric section did not significantly effect the prediction of an. 

The discrepancy in the values for flexibility coefficient an is consistent with the dis- 

crepancy in the fundamental out-of-plane natural frequency of the channel specimen. 

The discrepancy is smaller than the corresponding discrepancy in the I-specimen results. 

The experimental values for flexibility coefficients oc33 and oc23 corresponding to the neg- 

ative torque data correlate well with the modulus-weighted predictions. The exper- 

imental value for oe32 obtained from the out-of-plane tests does not correlate well with 

either of the predicted values. 
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Table 16.    Correlation of the flexibility coefficients for the channel specimen 

Flexibility Experiment         Analysis"  
Coefficient M-W"    Geometric 

a 22 

«33 

«23 

«32 

«12 

«21 

«13 V 

<*31 

in/lb 1.66 xlO~3 8.013 xlO-3 9.758 x 10"3 

in/lb 0.242 0.2678 0.3653 
rad/in-lb 0.258 x 10~2 0.2475 x 10"2 0.3401 x 10-2 

l/'lb 0.224 x 10-1 0.197 x 10'1 0.271 x 10"1 

1/lb 0.120 x 10"1 0.197 x 10-1 0.271 x 101 

in/lb 0.842 x 10-2 1.456 x 10~2 1.777 x 10~2 

in/lb 0.790 x 10-4 1.456 x 10~2 1.777 x 10"2 

1/lb 0.369 x 10-2 0.407 x 10"4 0.497 x 10~4 

1/lb -.201 x 10-4 0.407 x 10-4 0.497 x 10"4 

Finite element solution from Ref. 7 
b Modulus weighted section properties 
c Geometric section properties 

The correlation of flexibility coefficients an and o3I is not bad. The values are at 

least on the same order of magnitude. However, the good correlation is considered a 

coincidence since the experimental value for al2 is likely measuring a geometrically non- 

linear response and the scatter in the data associated with a31 is very high. Even the 

predicted values for oc12 and a31 should be considered carefully since they are linked to the 

poorly predicted in-plane response of the channel specimen. The experimental values for 

flexibility coefficients a2l and a13 do not correlate well with the predicted values. The ex- 

perimental values are actually smaller than the corresponding values for the I-specimen. 

This is unusual since these coefficients couple the in-plane and out-of-plane responses 

and the coupling for the channel specimen is expected to be more pronounced than for 

the I-specimen. This indicates that the experimental values for these coefficients cannot 

be relied upon. Certainly the correlation in these coefficients cannot be treated seriously. 
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Chapter 7 

Concluding Remarks 

The primary purpose in this study was to evaluate a new finite element program 

which was developed by Noor et al., (Ref. 7) specifically for the free-vibrational analysis 

of curved, thin-walled beams with open sections. An experimental program was under- 

taken to generate data which was characteristic of the static and free-vibrational re- 

sponse of two test specimens. The test specimens were semi-circular, graphite-epoxy 

frames which were intended to represent aircraft fuselage frames. One test specimen had 

a symmetric I cross section and the other had an asymmetric channel cross section. 

The experimental program consisted of both static and dynamic tests. A series of 

static tests generated the flexibility matrix which relates radial, lateral, and torsional 

loads at the midspan to radial, lateral, and twist displacements at the midspan. The dy- 

namic tests provided the frequencies and node locations of the in-plane and out-of-plane 

free-vibrational modes for clamped-clamped end conditions. 

The finite element program is based on a Vlasov-type, thin-walled, curved beam 

theory and accounts for the additional effects of transverse shear deformation and 
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rotatory inertia. However, for the specimens in this study, transverse shearing defor- 

mations did not significantly contribute to the response. The analytical predictions from 

the finite element program were confirmed in part by independent continuum solutions 

for the in-plane static and dynamic response of a monosymmetric curved beam. 

The analytical predictions correlated well with the experimental data from the sym- 

metric I-specimen. It was found that the experimental boundary conditions acted like 

torsional springs instead of clamps. The analytical predictions for the natural frequencies 

using clamped-end and pinned-end conditions bracketed the experimental data. The an- 

alytically predicted mode shapes correlated quite well with the experimentally located 

node positions. The largest discrepancy occurred in the prediction of the first out-of- 

plane natural frequency, which was 8.5 % lower than the experimental value (see Table 

13). 

The analytical predictions for the static response of the I-specimen also correlated 

well with experimental data. A substantial discrepancy in flexibility coefficient an (radial 

displacement/radial load) was shown to be a function of the flexibility in the exper- 

imental boundary conditions. Further investigation showed that the static tests required 

a softer support to model the boundary conditions than was required in the dynamic 

tests (compare Tables 11 and 14). The analytical prediction for flexibility coefficient a22 

(lateral displacement/lateral load) was larger than the experimental value. This is con- 

sistent with the discrepancy in the first out-of-plane natural frequency, since in both 

cases the analysis predicts a more compliant response than is seen in the experiments. 

The correlation between analysis and experiment is less satisfactory for the channel 

specimen than for the I-specimen. In general, the predicted out-of-plane static and 

vibrational responses correlated well with the experimental data. The predictions for the 

out-of-plane natural frequencies using clamped-end and pinned-end conditions brack- 

eted the experimental results (see Fig. 53).   The predictions for flexibility coefficients 
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a33 and <x23 correlated well with the experimental data( see Table 16). The analytical 

predictions for the first out-of-plane natural frequency (Table 13) and flexibility coeffi- 

cient a22 (Table 16) were again predicted to be more compliant than the experimental 

results consistent with the I-specimen results. These discrepancies are worth noting since 

it is unusual when correlating analysis with experimental data to find the analysis more 

compliant than the experimental response. 

Large discrepancies were observed between the analytical predictions for the in- 

plane static and vibrational responses of the channel specimen and the experimental 

data. The experimental natural frequencies are two to three times higher than the pre- 

dicted values (see Table 12). Thus, the analysis is significantly more compliant than the 

experiment. Consistent with this, the analytical prediction for flexibility coefficient au 

(Table 16) is five times higher than the experimental values. Discrepancies of this mag- 

nitude are difficult to explain, however, further investigation did show that the in-plane 

response of the asymmetric channel specimen is extremely sensitive to the cross-sectional 

property 1^ which couples in-plane bending and warping. 

The finite element program was developed for isotropic homogeneous materials. 

The composite nature of the test specimens was accounted for in part by using 

modulus-weighted section properties in place of section properties calculated based 

purely on the geometry of the cross section. The flexibility influence coefficients obtained 

using the modulus-weighted section properties correlated better with the experimental 

data than did coefficients obtained using purely geometric section properties (see Tables 

15 and 16). 

The magnitudes of some of the experimentally measured flexibility coefficients were 

found to be a function of the algebraic sign of the applied torque (see Table 6 for ex- 

ample). The experimental values for flexibility coefficients al2 and a21 differed by two 

orders of magnitude (Table 5-8).   The values for flexibility coefficients a13 and <x31 were 
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different magnitudes and in the case of the channel specimen were consistently of dif- 

ferent signs. Linear structural theory predicts the flexibility matrix to be symmetric, and 

consequently cannot account for the asymmetry of the flexibility matrixes measured in 

the experiments. A detailed analysis of the static out-of-plane response of curved frames 

requires a solution capable of modeling geometric nonlinearities. This is particularly true 

for frames with asymmetric cross sections. The necessity for a nonlinear solution is less 

apparent in the vibrational response of the curved frames. 

Future Work 

The data from the experimental tests could be improved upon in a number of ways. 

Simply securing the ends in potting compound and clamping the ends to a steel beam 

was not sufficient to model clamped end conditions. More elaborate steps could be taken 

to obtain clamped conditions. As a minimum, the potted ends should be bolted to the 

steel beam. The resolution in the out-of-plane static tests might be increased if the 

specimens were loaded with less force and more torque. This requires using larger mo- 

ment arms. Doing this without adding excessive weight to the specimens might not be 

a trivial exercise. 

With respect to the analysis, this study has raised some serious doubt about the 

accuracy of the predictions from the finite element program for the in-plane response 

of a curved beam with an asymmetric cross section. Comparisons with similar exper- 

imental data for other asymmetric sections seems to be in order. Certainly, some effort 

should be made toward resolving this issue since this element is expected to be imple- 

mented in a larger finite element code. 
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The discrepancies in the in-plane response of the channel specimen are of a magni- 

tude that makes it difficult to attribute them to the composite material system; however, 

extending the Hooke's law relation in the finite element program to account for the 

constitutive relations for laminated composites might help. Doing this may help explain 

the discrepancies in the fundamental out-of-plane natural frequencies, since they are of 

a much smaller magnitude. 

Thin-walled curved beam theories are complicated and application to composite 

structures should be undertaken with some caution. The assumption in Vlasov's theory 

that the shear strain in the midplane of the wall vanishes is a result of isotropic elasticity. 

This assumption should be re-examined using anisotropic elasticity to determine if it is 

a valid assumption with respect to laminated composites. 

Finally, a logical extension of this experimental work would be to load the frames 

to failure. Such tests would provide information on the large displacement response of 

the composite frames as well as first failure and post failure response. Research of this 

nature is certainly more germane to the issue of crashworthiness. This research is cur- 

rently being conducted by Mr. E. Moas, Graduate Research Assistant, and Professor 

O. H. Griffin in cooperation with the Landing and Impact Dynamics Branch at NASA 

Langley Research Center through the NASA-Virginia Tech Composites Program. 
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Appendix A 
Vibrational Test Data 

This appendix contains some of the data from the vibrational tests that was not 
presented in the text. The first section contains the frequency response plots from the 
clamped-clamped tests. The second section contains the comparison of the analytical 
mode shapes and the experimental node locations. 

Frequency Response Data from Dynamic Tests 

The frequency response plots from the structural analyzer dynamic tests are pre- 
sented here for the interested reader. Two sets of tests were run for each specimen, one 
series with radial excitation and one series with lateral excitation. The specimens were 
excited over a frequency range of 0-400 hertz. Noise began to dominate the response 
signal at about 375 hertz. In order to obtain sufficient resolution, it was necessary to test 
the specimens over smaller sub ranges, thus, the plots are presented in stages which 
overlap. 

Three displacement probes were monitored in each test, thus, there are three plots 
in each figure. Each plot consists of a response curve and a phase angle curve. A natural 
frequency is marked by a spike in the response curve accompanied by a shift in the phase 
angle curve. 

The probes were mounted in different orientations to detect both radial and lateral 
motion. The probe location and orientation is labeled in each plot. The three different 
orientations are defined in Fig. 56. The locations of the probes are measured in inches 
from the midspan of the specimen. The horizontal axis is the frequency of excitation in 
hertz and the vertical axis for the response curves has units of inches per pound on a log 
scale. 

The I-specimen plots are presented first followed by the channel specimen plots. 
Ideally a mode is indicated by a sharp isolated spike, however, frequently the spikes are 
small and closely spaced making interpretation difficult. This is particularly true for the 
channel specimen plots where both in-plane and out-of-plane modes were excited with 
either radial or lateral excitation. The magnitude of the spikes is generally a poor indi- 
cator of the relative strengths of the modes. The spike magnitude is a strong function 
of probe location and the location of the electro-magnetic shaker. If the shaker or the 
probe are located near a node, the mode will be difficult to excite or detect, respectively. 
The plots are presented without further comment. 
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(A) 

X X 

(B) 

IK X 

(C) 

Figure 56. Proximity probe orientations for clamped-clamped vibrational tests: The probe orientations 
relative to both cross sections are presented in (A)-(C). (A) In-plane edge. (B) In-plane 
Web. (C) Out-of-plane. 
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Mode Shapes 

This section presents the analytical mode shapes superimposed on the undeformed 
frame. The modes which were presented in the text are not repeated here. The exper- 
imentally located nodes are represented by dots in the figure, the undeformed frame is 
indicated by the solid line, and the mode shape is the broken line. Two free-free modes 
are presented in the first figure. The remaining modes are for the clamped-clamped case. 
The analytical mode shape was calculated by the finite element program discussed in 
Chapter 5. Two plots are presented in each figure, one for the I-specimen and one for 
the channel. The plots for the clamped-clamped modes are presented from top and front 
views. The I-specimen mode shapes consist of pure radial or pure out-of-plane motion. 
The channel modes are coupled and generally show motion in both views. The figures 
are presented without further comment. 
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(B) IHSEE NODE MODE 

Figure 70.    Two and three noded in-plane, free-free mode shapes:    Correlation between experimental 
data and continuum solution for the free-free in-plane modes of the I-specimen. 
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(A) I-SPECIMEN 
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...  NODE LOCATION     "»FORCE LOCATION 

(B) CHANNEL SPECIMEN 

Figure 71.    Three noded in-plane, clamped-clamped modes for both specimens:    The mode shapes of the 
three noded in-plane modes for both specimens are presented schematically. 
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(B) CHANNEL SPECIMEN 

Figure 72.   Four noded in-plane, clamped-clamped modes for both specimens:   The mode shapes of the 
four noded in-plane modes for both specimens are presented schematically. 
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(A) I-SPECIMEN 

Figure 73.   Seven noded in-plane, clamped-clamped modes for the I-specimen:   The mode shape of the 
seven noded in-plane mode for the I-specimen is presented schematically. 
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(B) CHANNEL SPECIMEN 

Figure 74.   Two noded out-of-plane, clamped-clamped modes for both specimens:   The mode shapes 
of the two noded out-of-plane modes for both specimens are presented schematically. 
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Figure 75.    Three noded out-of-plane, clamped-clamped modes for both specimens:   The mode shapes 
of the three noded out-of-plane modes for both specimens are presented schematically. 
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(B) CHANNEL SPECIMEN 

Figure 76.    Four noded out-of-plane, clamped-clamped modes for both specimens:    The mode shapes 
of the four noded out-of-plane modes for both specimens are presented schematically. 
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Figure 77.    Seven noded out-of-plane, clamped-clamped mode for the I-specimen:    The mode shape of 
the seven noded out-of-plane mode for the I-specimen is presented schematically. 
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Appendix B 
Static Test Data 

This appendix contains some information on the static tests which was not covered 
in the text. The first section presents the reduction scheme was used to calculate the 
lateral and radial displacements at the centroid of the cross section at midspan. The 
second section presents a sample of the reduced data from the in-plane and out-of-plane 
tests. 

Static Test Data Reduction 

The data reduction scheme for the static tests used three measured displacements 
on the load fixture to calculate the twist, </>x, of the cross section, the radial displacement, 
W, and the lateral displacement, V, at the centroid of the test specimen. In general, three 
measurements are sufficient to define the location of a body moving within a plane; 
hence, it is assumed that the midspan cross section does not deform circumferentially. 

We assume that the load fixture and the test specimen deform as a rigid body, thus, 
the load fixture and test specimen can be represented by a rectangular block. A generic 
rectangular body is shown in Fig. 78. A Cartesian coordinate system is placed at one 
corner of the rectangular block with positive axis coinciding with'the sides of the block. 
The Cartesian coordinate system is consistent with the system used in the text. With 
respect to the test specimen the z-axis is directed radially toward the center of the curved 
frame and the y-axis is perpendicular to the frame. The distances d1; d2, and d3, locate 
the three dial indicators with respect to the origin of the coordinate system. If the dis- 
tance rc, and the angle, 8C, locate the centroid C of the cross section with respect to point 
O on the load fixture, then the initial centroidal coordinates can be obtained from 

yc  =  rc  cos0c 

zc  =   rc   sin0c 
(B.l) 

Since the block is a rigid body, the location of the centroid can always be located 
from the point O on the block. Thus, given the deformed coordinates of O, it is possible 
to calculate the deformed coordinates of the centroid C. The deformed state of the block 
is shown in Fig. 79.  The deformed centroidal coordinates can be calculated from 

y* = y0 + rc cos ec + </>x ,   . 
zc  =  z0 + rc  sin dc + <f>x ^-^ 

in which y0 and z0 are the deformed coordinates of point O, and 4>x is the twist. 
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The centroidal displacements V and W are given by 

(B.3) V = yc-yc 

W  =   zc - zc 

Thus, the unknowns necessary to calculate the centroidal displacements are 
4>„ y0, and z0. The dial indicators are labelled 1, 2, and 3. The measurements from each 
dial indicator will be referred to as m„ m2, and m3 , respectively. The points O, P, and 
Q lie along line 1,. The equation for line 1, can be calculated from the coordinates of 
points B and C which are (^„m,) and (d2 + d^mj), respectively. The twist, <j)x; is the 
slope of line ly  The equations for 4>x and line 1, are 

(m2 - m,) 
031  ~ d2 (B.4) 

I,:       z-m2   =  0X [y - (d1 + d2)] 

Since point O lies on line 1„ the coordinate y„ and z0 must satisfy Eqn. (B.4). Points 
O and R define a second line, 12; which is perpendicular to line 1„ thus the slope of line 
12 is -l/</v A second equation for line 12 and the coordinates y0 and z0 must satisfy this 
equation as well. 

12:       z-d3   -   --J- (y-m3) (B.5) 

Substituting y0 and z0 into Eqn. (B.5), solving for y0, and substituting that expression 
into the equation for line 1, yields the following expressions for y0 and z0. 

z0  =   {m2 + </>x[</>xd3 + m3 - (di + da)]} (ß 6) 

Yo   =   <Wd3 " zo) + m3 

The expressions for y0 and z0 can be used in conjunction with Eqs. (B.1-B.3) to ob- 
tain the lateral and radial displacements of the centroid. The special case where 4>x is zero 
corresponds to pure translation and the equations reduce to 

v  =   m3 (B>7) 
w =  nv, 

as expected. 
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Reduced Static Data 

The tables presented in this section contain a sample of the reduced data obtained 
from.the reduction scheme presented in the previous section. The radial and lateral dis- 
placements and the twist at midspan for both test specimens for radial loads of twenty, 
forty, and sixty pounds are presented in Tables 17, 18, and 19. The moment arm asso- 
ciated with each set of data is different for the two specimens. There is more data for the 
channel specimen because the response of the channel specimen was not as consistent 
as the response of the I-specimen. The flexibility influence coefficients were calculated 
from this data using the least squares method discussed in Chapter 4. The radial and 
lateral displacements and the twist at midspan for both specimens from the out-of-plane 
tests are presented in Tables 20 and 21. For the out-of-plane tests, the moment arms 
were the same for the two specimens but the lateral loads were different. The test data 
for lateral loads of 2.187 and and 1.063 pounds are presented in Table 20 for the I- 
specimen and channel specimen, respectively. The test data for lateral loads of 3.25 and 
2.00 pounds are presented in Table 21 for the I-specimen and the channel specimen, re- 
spectively. 
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Appendix C 
Cross-Sectional Properties 

The modulus-weighted and geometric cross-sectional properties of the two speci- 
mens are presented in Table 22. The geometric section properties were obtained using a 
computer program listed in Ref. 33. The modulus-weighted section properties were ob- 
tained by modifying this computer program to evaluate the expressions for the 
modulus-weighted section properties presented in Chapter 5. The modulus-weighted 
section properties are normalized by the effective engineering moduli determined by the 
coupon tests discussed in Chapter 2. The mass density of the material measured to be 
1465. kilograms per cubic meter. 

Table  1.    Cross-sectional properties of both test specimens 

Section I-specimen Channel Specimen 
Property M-W« Geometricb M-W« Geometric" 

A m2 0.3658 x lO-3 c 0.3310 x lO"3 0.2323 x lO-3 < 0.2102 x lO"3 

Av m2 0.3658 x lO-3" 0.3310 x lO-3 0.2323 x lO-3 d 0.2102 x lO-3 

A, m2 0.3658 x lO-3« 0.3310 x lO-3 0.2323 x lO-3 « 0.2102 x lO-3 

Iw m4 0.5339 x 10-7 < 0.4813 x lO-7 0.3202 x 10-7 e 0.2888 x lO-7 

Ia m4 1.6705 x 10-7' 1.5114 x 10-7 0.4844 x lO-7« 0.4382 x 10-7 

I* m4 0.0000 x 10-7 « 0.000 x lO"7 -.1070 x 10"7c -.9685 x 10-8 

J m4 0.8842 x 10-»" 0.7825 x 10-' 0.5026 x 10-'« 0.4378 x 10-' 
s. m5 0.9671 x 10-7 <= 0.8755 x lO-7 0.1089 x 10-7c 0.9860 x 10-8 

*a)y m5 -.3217 x 10-15 c -.4539 x 10-15 -.6650 x 10-'c -.6023 x 10-' 
'•Oil m5 0.8114 x 10-' « 0.7343 x 10-' 0.4301 x 10-'c 0.3829 x 10-' 
*-<oat m6 0.3558 x 10-»°« 0.3213 x 10-'° 0.1688 x 10-'0e 0.1526 x 10-10 

Modulus-Weighted section properties from Chapter 5 
Geometric section properties from Ref. 33 
Normalized by E= 5.075 x 1010   Nt/m2 

Normalized by G= 1.953 x 1010   Nt/ m2 
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